29 research outputs found

    Expression and regulation of caudal in the lower cyclorrhaphan fly Megaselia

    Get PDF
    The homeobox gene caudal (cad) regulates posterior development in Drosophila. In early embryos, the cad protein (CAD) is expressed in a posterior-to-anterior concentration gradient, which contributes polarity to the developing embryo. The CAD gradient is complementary to and dependent on the anterior pattern organizer Bicoid (BCD), which represses the translation of ubiquitous maternal cad transcripts in the anterior embryo through a direct interaction with the cad 3′ untranslated region (UTR). Here, we show that early embryos of the lower cyclorrhaphan fly Megaselia express the putative cad orthologue Mab-cad throughout the posterior three quarters of the blastoderm but lack maternal transcripts. In transgenic blastoderm embryos of Drosophila, Mab-cad cis-regulatory DNA drives the expression of a reporter gene in a similar pattern, while Mab-cad 3′ UTR fails to mediate translational repression of a ubiquitously transcribed reporter. For another lower cyclorrhaphan fly (Lonchoptera) and two related outgroup taxa of Cyclorrhapha (Empis, Haematopota), we report maternal cad expression in ovarian follicles. Together, our results suggest that BCD is not required for the translational repression of Mab-cad, and that maternal cad expression was lost in the Megaselia lineage

    Network Evolution of Body Plans

    Get PDF
    Segmentation in arthropod embryogenesis represents a well-known example of body plan diversity. Striped patterns of gene expression that lead to the future body segments appear simultaneously or sequentially in long and short germ-band development, respectively. Regulatory genes relevant for stripe formation are evolutionarily conserved among arthropods, therefore the differences in the observed traits are thought to have originated from how the genes are wired. To reveal the basic differences in the network structure, we have numerically evolved hundreds of gene regulatory networks that produce striped patterns of gene expression. By analyzing the topologies of the generated networks, we show that the characteristics of stripe formation in long and short germ-band development are determined by Feed-Forward Loops (FFLs) and negative Feed-Back Loops (FBLs) respectively. Network architectures, gene expression patterns and knockout responses exhibited by the artificially evolved networks agree with those reported in the fly Drosophila melanogaster and the beetle Tribolium castaneum. For other arthropod species, principal network architectures that remain largely unknown are predicted.Comment: 35 pages, 4 figures and 1 tabl

    Involvement of Cyclin K Posttranscriptional Regulation in the Formation of Artemia Diapause Cysts

    Get PDF
    Background: Artemia eggs tend to develop ovoviviparously to yield nauplius larvae in good rearing conditions; while under adverse situations, they tend to develop oviparously and encysted diapause embryos are formed instead. However, the intrinsic mechanisms regulating this process are not well understood. Principal Finding: This study has characterized the function of cyclin K, a regulatory subunit of the positive transcription elongation factor b (P-TEFb) in the two different developmental pathways of Artemia. In the diapause-destined embryo, Western blots showed that the cyclin K protein was down-regulated as the embryo entered dormancy and reverted to relatively high levels of expression once development resumed, consistent with the fluctuations in phosphorylation of position 2 serines (Ser2) in the C-terminal domain (CTD) of the largest subunit (Rpb1) of RNA polymerase II (RNAP II). Interestingly, the cyclin K transcript levels remained constant during this process. In vitro translation data indicated that the template activity of cyclin K mRNA stored in the postdiapause cyst was repressed. In addition, in vivo knockdown of cyclin K in developing embryos by RNA interference eliminated phosphorylation of the CTD Ser2 of RNAP II and induced apoptosis by inhibiting the extracellular signal-regulated kinase (ERK) survival signaling pathway. Conclusions/Significance: Taken together, these findings reveal a role for cyclin K in regulating RNAP II activity during diapause embryo development, which involves the post-transcriptional regulation of cyclin K. In addition, a further role wa

    Cytokine signaling through the JAK/STAT pathway is required for long-term memory in Drosophila

    Full text link
    Cytokine signaling through the JAK/STAT pathway regulates multiple cellular responses, including cell survival, differentiation, and motility. Although significant attention has been focused on the role of cytokines during inflammation and immunity, it has become clear that they are also implicated in normal brain function. However, because of the large number of different genes encoding cytokines and their receptors in mammals, the precise role of cytokines in brain physiology has been difficult to decipher. Here, we took advantage of Drosophila’s being a genetically simpler model system to address the function of cytokines in memory formation. Expression analysis showed that the cytokine Upd is enriched in the Drosophila memory center, the mushroom bodies. Using tissue- and adult-specific expression of RNAi and dominant-negative proteins, we show that not only is Upd specifically required in the mushroom bodies for olfactory aversive long-term memory but the Upd receptor Dome, as well as the Drosophila JAK and STAT homologs Hop and Stat92E, are also required, while being dispensable for less stable memory forms
    corecore