4,005 research outputs found

    Perturbed Self-Similar Massless Scalar Field in Spherically Symmetric Spaceimes

    Full text link
    In this paper, we investigate the linear perturbations of the spherically symmetric spacetimes with kinematic self-similarity of the second kind. The massless scalar field equations are solved which yield the background and an exact solutions for the perturbed equations. We discuss the boundary conditions of the resulting perturbed solutions. The possible perturbation modes turn out to be stable as well as unstable. The analysis leads to the conclusion that there does not exist any critical solution.Comment: 15 pages, accepted for publication Int. J. Mod. Phys.

    Perturbative Analysis of Universality and Individuality in Gravitational Waves from Neutron Stars

    Full text link
    The universality observed in gravitational wave spectra of non-rotating neutron stars is analyzed here. We show that the universality in the axial oscillation mode can be reproduced with a simple stellar model, namely the centrifugal barrier approximation (CBA), which captures the essence of the Tolman VII model of compact stars. Through the establishment of scaled co-ordinate logarithmic perturbation theory (SCLPT), we are able to explain and quantitatively predict such universal behavior. In addition, quasi-normal modes of individual neutron stars characterized by different equations of state can be obtained from those of CBA with SCLPT.Comment: 29 pages, 10 figures, submitted to Astrophysical Journa

    Gravitational Radiation from a Naked Singularity -- Odd-Parity Perturbation --

    Get PDF
    It has been suggested that a naked singularity may be a good candidate for a strong gravitational wave burster. The naked singularity occurs in the generic collapse of an inhomogeneous dust ball. We study odd-parity mode of gravitational waves from a naked singularity of the Lema\^{\i}tre-Tolman-Bondi space-time. The wave equation for gravitational waves are solved by numerical integration using the single null coordinate. The result is that the naked singularity is not a strong source of the odd-parity gravitational radiation although the metric perturbation grows in the central region. Therefore, the Cauchy horizon in this space-time would be marginally stable against odd-parity perturbations.Comment: 14 pages, 7 figures, to be published in Prog. Theor. Phys. Final version, with minor changes. Reference 13 adde

    On the Superradiance of Spin-1 Waves in an Equatorial Wedge around a Kerr Hole

    Get PDF
    Recently Van Putten has suggested that superradiance of magnetosonic waves in a toroidal magnetosphere around a Kerr black hole may play a role in the central engine of gamma-ray bursts. In this context, he computed (in the WKB approximation) the superradiant amplification of scalar waves confined to a thin equatorial wedge around a Kerr hole and found that the superradiance is higher than for radiation incident over all angles. This paper presents calculations of both spin-0 (scalar) superradiance (integrating the radial equation rather than using the WKB method) and and spin-1 (electromagnetic/magnetosonic) superradiance, in Van Putten's wedge geometry. In contrast to the scalar case, spin-1 superradiance decreases in the wedge geometry, decreasing the likelihood of its astrophysical importance.Comment: Submitted to The Astrophysical Journal Letter

    Transient Rayleigh-Benard-Marangoni Convection due to Evaporation : a Linear Non-normal Stability Analysis

    Full text link
    The convective instability in a plane liquid layer with time-dependent temperature profile is investigated by means of a general method suitable for linear stability analysis of an unsteady basic flow. The method is based on a non-normal approach, and predicts the onset of instability, critical wave number and time. The method is applied to transient Rayleigh-Benard-Marangoni convection due to cooling by evaporation. Numerical results as well as theoretical scalings for the critical parameters as function of the Biot number are presented for the limiting cases of purely buoyancy-driven and purely surface-tension-driven convection. Critical parameters from calculations are in good agreement with those from experiments on drying polymer solutions, where the surface cooling is induced by solvent evaporation.Comment: 31 pages, 8 figure
    • …
    corecore