288 research outputs found

    Quantum Reed-Solomon Codes

    Get PDF
    After a brief introduction to both quantum computation and quantum error correction, we show how to construct quantum error-correcting codes based on classical BCH codes. With these codes, decoding can exploit additional information about the position of errors. This error model - the quantum erasure channel - is discussed. Finally, parameters of quantum BCH codes are provided.Comment: Summary only (2 pages), for the full version see: Proceedings Applied Algebra, Algebraic Algorithms and Error-Correcting Codes (AAECC-13), Lecture Notes in Computer Science 1719, Springer, 199

    Ischaemic colitis: Practical challenges and evidence-based recommendations for management

    Get PDF
    Ischaemic colitis (IC) is a common condition with rising incidence, and in severe cases a high mortality rate. Its presentation, severity and disease behaviour can vary widely, and there exists significant heterogeneity in treatment strategies and resultant outcomes. In this article we explore practical challenges in the management of IC, and where available make evidence-based recommendations for its management based on a comprehensive review of available literature. An optimal approach to initial management requires early recognition of the diagnosis followed by prompt and appropriate investigation. Ideally, this should involve the input of both gastroenterology and surgery. CT with intravenous contrast is the imaging modality of choice. It can support clinical diagnosis, define the severity and distribution of ischaemia, and has prognostic value. In all but fulminant cases, this should be followed (within 48 hours) by lower gastrointestinal endoscopy to reach the distal-most extent of the disease, providing endoscopic (and histological) confirmation. The mainstay of medical management is conservative/supportive treatment, with bowel rest, fluid resuscitation and antibiotics. Specific laboratory, radiological and endoscopic features are recognised to correlate with more severe disease, higher rates of surgical intervention and ultimately worse outcomes. These factors should be carefully considered when deciding on the need for and timing of surgical intervention

    Experimental quantum coding against photon loss error

    Full text link
    A significant obstacle for practical quantum computation is the loss of physical qubits in quantum computers, a decoherence mechanism most notably in optical systems. Here we experimentally demonstrate, both in the quantum circuit model and in the one-way quantum computer model, the smallest non-trivial quantum codes to tackle this problem. In the experiment, we encode single-qubit input states into highly-entangled multiparticle codewords, and we test their ability to protect encoded quantum information from detected one-qubit loss error. Our results prove the in-principle feasibility of overcoming the qubit loss error by quantum codes.Comment: "Quantum Computing even when Photons Go AWOL". published versio

    Einstein metrics in projective geometry

    Full text link
    It is well known that pseudo-Riemannian metrics in the projective class of a given torsion free affine connection can be obtained from (and are equivalent to) the solutions of a certain overdetermined projectively invariant differential equation. This equation is a special case of a so-called first BGG equation. The general theory of such equations singles out a subclass of so-called normal solutions. We prove that non-degerate normal solutions are equivalent to pseudo-Riemannian Einstein metrics in the projective class and observe that this connects to natural projective extensions of the Einstein condition.Comment: 10 pages. Adapted to published version. In addition corrected a minor sign erro

    MUBs inequivalence and affine planes

    Full text link
    There are fairly large families of unitarily inequivalent complete sets of N+1 mutually unbiased bases (MUBs) in C^N for various prime powers N. The number of such sets is not bounded above by any polynomial as a function of N. While it is standard that there is a superficial similarity between complete sets of MUBs and finite affine planes, there is an intimate relationship between these large families and affine planes. This note briefly summarizes "old" results that do not appear to be well-known concerning known families of complete sets of MUBs and their associated planes.Comment: This is the version of this paper appearing in J. Mathematical Physics 53, 032204 (2012) except for format changes due to the journal's style policie

    Basic concepts in quantum computation

    Get PDF
    Section headings: 1 Qubits, gates and networks 2 Quantum arithmetic and function evaluations 3 Algorithms and their complexity 4 From interferometers to computers 5 The first quantum algorithms 6 Quantum search 7 Optimal phase estimation 8 Periodicity and quantum factoring 9 Cryptography 10 Conditional quantum dynamics 11 Decoherence and recoherence 12 Concluding remarksComment: 37 pages, lectures given at les Houches Summer School on "Coherent Matter Waves", July-August 199

    Indeterminate-length quantum coding

    Get PDF
    The quantum analogues of classical variable-length codes are indeterminate-length quantum codes, in which codewords may exist in superpositions of different lengths. This paper explores some of their properties. The length observable for such codes is governed by a quantum version of the Kraft-McMillan inequality. Indeterminate-length quantum codes also provide an alternate approach to quantum data compression.Comment: 32 page

    A construction of G_2 holonomy spaces with torus symmetry

    Get PDF
    In the present work the Calderbank-Pedersen description of four dimensional manifolds with self-dual Weyl tensor is used to obtain examples of quaternionic-kahler metrics with two commuting isometries. The eigenfunctions of the hyperbolic laplacian are found by use of Backglund transformations acting over solutions of the Ward monopole equation. The Bryant-Salamon construction of G2G_2 holonomy metrics arising as R3R^3 bundles over quaternionic-kahler base spaces is applied to this examples to find internal spaces of the M-theory that leads to an N=1 supersymmetry in four dimensions. Type IIA solutions will be obtained too by reduction along one of the isometries. The torus symmetry of the base spaces is extended to the total ones.Comment: Version with 23 pages, no figures, the one form corresponding to the 3 pole solution are expressed in another wa

    Topological quantum memory

    Get PDF
    We analyze surface codes, the topological quantum error-correcting codes introduced by Kitaev. In these codes, qubits are arranged in a two-dimensional array on a surface of nontrivial topology, and encoded quantum operations are associated with nontrivial homology cycles of the surface. We formulate protocols for error recovery, and study the efficacy of these protocols. An order-disorder phase transition occurs in this system at a nonzero critical value of the error rate; if the error rate is below the critical value (the accuracy threshold), encoded information can be protected arbitrarily well in the limit of a large code block. This phase transition can be accurately modeled by a three-dimensional Z_2 lattice gauge theory with quenched disorder. We estimate the accuracy threshold, assuming that all quantum gates are local, that qubits can be measured rapidly, and that polynomial-size classical computations can be executed instantaneously. We also devise a robust recovery procedure that does not require measurement or fast classical processing; however for this procedure the quantum gates are local only if the qubits are arranged in four or more spatial dimensions. We discuss procedures for encoding, measurement, and performing fault-tolerant universal quantum computation with surface codes, and argue that these codes provide a promising framework for quantum computing architectures.Comment: 39 pages, 21 figures, REVTe

    Encoding a qubit in an oscillator

    Get PDF
    Quantum error-correcting codes are constructed that embed a finite-dimensional code space in the infinite-dimensional Hilbert space of a system described by continuous quantum variables. These codes exploit the noncommutative geometry of phase space to protect against errors that shift the values of the canonical variables q and p. In the setting of quantum optics, fault-tolerant universal quantum computation can be executed on the protected code subspace using linear optical operations, squeezing, homodyne detection, and photon counting; however, nonlinear mode coupling is required for the preparation of the encoded states. Finite-dimensional versions of these codes can be constructed that protect encoded quantum information against shifts in the amplitude or phase of a d-state system. Continuous-variable codes can be invoked to establish lower bounds on the quantum capacity of Gaussian quantum channels.Comment: 22 pages, 8 figures, REVTeX, title change (qudit -> qubit) requested by Phys. Rev. A, minor correction
    corecore