5,060 research outputs found

    CDRA-4EU Testing to Assess Increased Number of ISS Crew

    Get PDF
    The International Space Station (ISS) program is investigating methods to increase carbon dioxide (CO2) removal on ISS in order to support an increased number of astronauts at a future date. The Carbon Dioxide Removal Assembly - Engineering Unit (CDRA-4EU) system at NASA Marshall Space Flight Center (MSFC) was tested at maximum fan settings to evaluate CO2 removal rate and power consumption at those settings

    4BMS-X Design and Test Activation

    Get PDF
    In support of the NASA goals to reduce power, volume and mass requirements on future CO2 (Carbon Dioxide) removal systems for exploration missions, a 4BMS (Four Bed Molecular Sieve) test bed was fabricated and activated at the NASA Marshall Space Flight Center. The 4BMS-X (Four Bed Molecular Sieve-Exploration) test bed used components similar in size, spacing, and function to those on the flight ISS flight CDRA system, but were assembled in an open framework. This open framework allows for quick integration of changes to components, beds and material systems. The test stand is highly instrumented to provide data necessary to anchor predictive modeling efforts occurring in parallel to testing. System architecture and test data collected on the initial configurations will be presented

    Twenty-one centimeter tomography with foregrounds

    Full text link
    Twenty-one centimeter tomography is emerging as a powerful tool to explore the end of the cosmic dark ages and the reionization epoch, but it will only be as good as our ability to accurately model and remove astrophysical foreground contamination. Previous treatments of this problem have focused on the angular structure of the signal and foregrounds and what can be achieved with limited spectral resolution (bandwidths in the 1 MHz range). In this paper we introduce and evaluate a ``blind'' method to extract the multifrequency 21cm signal by taking advantage of the smooth frequency structure of the Galactic and extragalactic foregrounds. We find that 21 cm tomography is typically limited by foregrounds on scales k≪1h/k\ll 1h/Mpc and limited by noise on scales k≫1h/k\gg 1h/Mpc, provided that the experimental bandwidth can be made substantially smaller than 0.1 MHz. Our results show that this approach is quite promising even for scenarios with rather extreme contamination from point sources and diffuse Galactic emission, which bodes well for upcoming experiments such as LOFAR, MWA, PAST, and SKA.Comment: 10 pages, 6 figures. Revised version including various cases with high noise level. Major conclusions unchanged. Accepted for publication in Ap

    Thermal performance of two heat exchangers for thermoelectric generators

    Get PDF
    Thermal performance of heat exchanger is important for potential application in integrated solar cell/module and thermoelectric generator (TEG) system. Usually, thermal performance of a heat exchanger for TEGs is analysed by using a 1D heat conduction theory which ignores the detailed phenomena associated with thermo-hydraulics. In this paper, thermal and mass transports in two different exchangers are simulated by means of a steady-state, 3D turbulent flow k -e model with a heat conduction module under various flow rates. In order to simulate an actual working situation of the heat exchangers, hot block with an electric heater is included in the model. TEG model is simplified by using a 1D heat conduction theory, so its thermal performance is equivalent to a real TEG. Natural convection effect on the outside surfaces of the computational model is considered. Computational models and methods used are validated under transient thermal and electrical experimental conditions of a TEG. It is turned out that the two heat exchangers designed have a better thermal performance compared with an existing heat exchanger for TEGs, and more importantly, the fin heat exchanger is more compact and has nearly half temperature rise compared with the tube heat exchanger

    A Method for Individual Source Brightness Estimation in Single- and Multi-band Data

    Full text link
    We present a method of reliably extracting the flux of individual sources from sky maps in the presence of noise and a source population in which number counts are a steeply falling function of flux. The method is an extension of a standard Bayesian procedure in the millimeter/submillimeter literature. As in the standard method, the prior applied to source flux measurements is derived from an estimate of the source counts as a function of flux, dN/dS. The key feature of the new method is that it enables reliable extraction of properties of individual sources, which previous methods in the literature do not. We first present the method for extracting individual source fluxes from data in a single observing band, then we extend the method to multiple bands, including prior information about the spectral behavior of the source population(s). The multi-band estimation technique is particularly relevant for classifying individual sources into populations according to their spectral behavior. We find that proper treatment of the correlated prior information between observing bands is key to avoiding significant biases in estimations of multi-band fluxes and spectral behavior, biases which lead to significant numbers of misclassified sources. We test the single- and multi-band versions of the method using simulated observations with observing parameters similar to that of the South Pole Telescope data used in Vieira, et al. (2010).Comment: 11 emulateapj pages, 3 figures, revised to match published versio

    Van der Waals epitaxy of C₆₀ on the topological insulator Bi₂Se₃

    Get PDF
    This application note describes the growth of a novel Bi₂Se₃/ C₆₀ heterostructure in the Royce deposition system at the University of Leeds. We also present structural characterisation and transmission electron microscopy data in order to understand nature of the Bi₂Se₃/ C₆₀ interface

    Virtual Design of a Four-Bed Molecular Sieve for Exploration

    Get PDF
    Aboard the International Space Station, CO2 is removed from the cabin atmosphere by a four-bed molecular sieve (4BMS) process called the Carbon Dioxide Removal Assembly (CDRA).1 This 4BMS process operates by passing the CO2-laden air through a desiccant bed to remove any humidity and then passing the dried air through a sorbent bed to remove the CO2. While one pair of beds is in use, the other pair is thermally regenerated to allow for continuous CO2 removal

    LRX Proteins play a crucial role in pollen grain and pollen tube cell wall development

    Get PDF
    Leucine-rich repeat extensins (LRXs) are chimeric proteins containing an N-terminal leucine-rich repeat (LRR) and a C-terminal extensin domain. LRXs are involved in cell wall formation in vegetative tissues and required for plant growth. However, the nature of their role in these cellular processes remains to be elucidated. Here, we used a combination of molecular techniques, light microscopy, and transmission electron microscopy to characterize mutants of pollen-expressed LRXs in Arabidopsis thaliana. Mutations in multiple pollen-expressed lrx genes causes severe defects in pollen germination and pollen tube (PT) growth, resulting in a reduced seed set. Physiological experiments demonstrate that manipulating Ca2+ availability partially suppresses the PT growth defects, suggesting that LRX proteins influence Ca2+-related processes. Furthermore, we show that LRX protein localizes to the cell wall, and its LRR-domain (which likely mediates protein-protein interactions) is associated with the plasma membrane. Mechanical analyses by cellular force microscopy and finite element method-based modelling revealed significant changes in the material properties of the cell wall and the fine-tuning of cellular biophysical parameters in the mutants compared to the wild type. The results indicate that LRX proteins might play a role in cell wall-plasma membrane communication, influencing cell wall formation and cellular mechanics

    Not Exactly Dragon\u27s Den: Enterprise Challenges can Enhance Psychological Literacy.

    Get PDF
    Enterprise challenges are teaching activities that allow students to develop and pitch a creative idea in response to a real-life challenge, usually posed by a charitable organisation. Students work in teams to develop their ideas and draw on their subject knowledge, as well as entrepreneurial processes, to articulate their product or service that addresses the challenge. These activities have the potential to enhance psychological literacy as they provide an opportunity to utilise psychological knowledge and skills in novel and unfamiliar ways and urges students to find creative solutions to societal problems. This article presents the rationale and structure to design an enterprise challenge in psychology teaching and uses two case studies to show diverse ways of delivering these teaching events. Evaluation data from six previous challenges show that students self-rate their perceived psychological literacy and entrepreneurial orientation higher after having participated in an enterprise challenge. These teaching activities present a propitious way of enhancing psychological literacy in the curriculum and supporting students on their journey to develop as global citizens

    Far Ultraviolet Observations of the Dwarf Nova VW Hyi in Quiescence

    Full text link
    We present a 904-1183 A spectrum of the dwarf nova VW Hydri taken with the Far Ultraviolet Spectroscopic Explorer during quiescence, eleven days after a normal outburst, when the underlying white dwarf accreter is clearly exposed in the far ultraviolet. However, model fitting show that a uniform temperature white dwarf does not reproduce the overall spectrum, especially at the shortest wavelengths. A better approximation to the spectrum is obtained with a model consisting of a white dwarf and a rapidly rotating ``accretion belt''. The white dwarf component accounts for 83% of the total flux, has a temperature of 23,000K, a v sin i = 400 km/s, and a low carbon abundance. The best-fit accretion belt component accounts for 17% of the total flux, has a temperature of about 48,000-50,000K, and a rotation rate Vrot sin i around 3,000-4,000 km/s. The requirement of two components in the modeling of the spectrum of VW Hyi in quiescence helps to resolve some of the differences in interpretation of ultraviolet spectra of VW Hyi in quiescence. However, the physical existence of a second component (and its exact nature) in VW Hyi itself is still relatively uncertain, given the lack of better models for spectra of the inner disk in a quiescent dwarf nova.Comment: 6 figures, 10 printed page in the journal, to appear in APJ, 1 Sept. 2004 issue, vol. 61
    • …
    corecore