3,418 research outputs found

    Integration of Dirac-Jacobi structures

    Full text link
    We study precontact groupoids whose infinitesimal counterparts are Dirac-Jacobi structures. These geometric objects generalize contact groupoids. We also explain the relationship between precontact groupoids and homogeneous presymplectic groupoids. Finally, we present some examples of precontact groupoids.Comment: 10 pages. Brief changes in the introduction. References update

    Poisson-Jacobi reduction of homogeneous tensors

    Full text link
    The notion of homogeneous tensors is discussed. We show that there is a one-to-one correspondence between multivector fields on a manifold MM, homogeneous with respect to a vector field Δ\Delta on MM, and first-order polydifferential operators on a closed submanifold NN of codimension 1 such that Δ\Delta is transversal to NN. This correspondence relates the Schouten-Nijenhuis bracket of multivector fields on MM to the Schouten-Jacobi bracket of first-order polydifferential operators on NN and generalizes the Poissonization of Jacobi manifolds. Actually, it can be viewed as a super-Poissonization. This procedure of passing from a homogeneous multivector field to a first-order polydifferential operator can be also understood as a sort of reduction; in the standard case -- a half of a Poisson reduction. A dual version of the above correspondence yields in particular the correspondence between Δ\Delta-homogeneous symplectic structures on MM and contact structures on NN.Comment: 19 pages, minor corrections, final version to appear in J. Phys. A: Math. Ge

    Jacobi structures revisited

    Full text link
    Jacobi algebroids, that is graded Lie brackets on the Grassmann algebra associated with a vector bundle which satisfy a property similar to that of the Jacobi brackets, are introduced. They turn out to be equivalent to generalized Lie algebroids in the sense of Iglesias and Marrero and can be viewed also as odd Jacobi brackets on the supermanifolds associated with the vector bundles. Jacobi bialgebroids are defined in the same manner. A lifting procedure of elements of this Grassmann algebra to multivector fields on the total space of the vector bundle which preserves the corresponding brackets is developed. This gives the possibility of associating canonically a Lie algebroid with any local Lie algebra in the sense of Kirillov.Comment: 20 page

    A general framework for nonholonomic mechanics: Nonholonomic Systems on Lie affgebroids

    Get PDF
    This paper presents a geometric description of Lagrangian and Hamiltonian systems on Lie affgebroids subject to affine nonholonomic constraints. We define the notion of nonholonomically constrained system, and characterize regularity conditions that guarantee that the dynamics of the system can be obtained as a suitable projection of the unconstrained dynamics. It is shown that one can define an almost aff-Poisson bracket on the constraint AV-bundle, which plays a prominent role in the description of nonholonomic dynamics. Moreover, these developments give a general description of nonholonomic systems and the unified treatment permits to study nonholonomic systems after or before reduction in the same framework. Also, it is not necessary to distinguish between linear or affine constraints and the methods are valid for explicitly time-dependent systems.Comment: 50 page

    Interplane magnetic coupling effects in the multilattice compound Y_2Ba_4Cu_7O_{15}

    Full text link
    We investigate the interplane magnetic coupling of the multilattice compound Y_2Ba_4Cu_7O_{15} by means of a bilayer Hubbard model with inequivalent planes. We evaluate the spin response, effective interaction and the intra- and interplane spin-spin relaxation times within the fluctuation exchange approximation. We show that strong in-plane antiferromagnetic fluctuations are responsible for a magnetic coupling between the planes, which in turns leads to a tendency of the fluctuation in the two planes to equalize. This equalization effect grows whit increasing in-plane antiferromagnetic fluctuations, i. e., with decreasing temperature and decreasing doping, while it is completely absent when the in-layer correlation length becomes of the order of one lattice spacing. Our results provide a good qualitative description of NMR and NQR experiments in Y_2Ba_4Cu_7O_{15}.Comment: Final version, to appear. in Phys. Rev. B (Rapid Communications), sched. Jan. 9

    FÖRSTER TRANSFER CALCULATIONS BASED ON CRYSTAL STRUCTURE DATA FROM Agmenellum quadruplicatum C-PHYCOCYANIN

    Get PDF
    Excitation energy transfer in C-phycocyanin is modeled using the Forster inductive resonance mechanism. Detailed calculations are carried out using coordinates and orientations of the chromophores derived from X-ray crystallographic studies of C-phycocyanin from two different species (Schirmer et al, J. Mol. Biol. 184, 257–277 (1985) and ibid., 188, 651-677 (1986)). Spectral overlap integrals are estimated from absorption and fluorescence spectra of C-phycocyanin of Mastigocladus laminosus and its separated subunits. Calculations are carried out for the β-subunit, αβ-monomer, (αβ)3-trimer and (αβ)0-hexamer species with the following chromophore assignments: β155 = 's’(sensitizer), β84 =‘f (fluorescer) and α84 =‘m’(intermediate):]:. The calculations show that excitation transfer relaxation occurs to 3=98% within 200 ps in nearly every case; however, the rates increase as much as 10-fold for the higher aggregates. Comparison with experimental data on fluorescence decay and depolarization kinetics from the literature shows qualitative agreement with these calculations. We conclude that Forster transfer is sufficient to account for all of the observed fluorescence properties of C-phycocyanin in aggregation states up to the hexamer and in the absence of linker polypeptides

    Pseudospectral Calculation of the Wavefunction of Helium and the Negative Hydrogen Ion

    Full text link
    We study the numerical solution of the non-relativistic Schr\"{o}dinger equation for two-electron atoms in ground and excited S-states using pseudospectral (PS) methods of calculation. The calculation achieves convergence rates for the energy, Cauchy error in the wavefunction, and variance in local energy that are exponentially fast for all practical purposes. The method requires three separate subdomains to handle the wavefunction's cusp-like behavior near the two-particle coalescences. The use of three subdomains is essential to maintaining exponential convergence. A comparison of several different treatments of the cusps and the semi-infinite domain suggest that the simplest prescription is sufficient. For many purposes it proves unnecessary to handle the logarithmic behavior near the three-particle coalescence in a special way. The PS method has many virtues: no explicit assumptions need be made about the asymptotic behavior of the wavefunction near cusps or at large distances, the local energy is exactly equal to the calculated global energy at all collocation points, local errors go down everywhere with increasing resolution, the effective basis using Chebyshev polynomials is complete and simple, and the method is easily extensible to other bound states. This study serves as a proof-of-principle of the method for more general two- and possibly three-electron applications.Comment: 23 pages, 20 figures, 2 tables, Final refereed version - Some references added, some stylistic changes, added paragraph to matrix methods section, added last sentence to abstract

    Lie algebroid foliations and E1(M){\cal E}^1(M)-Dirac structures

    Full text link
    We prove some general results about the relation between the 1-cocycles of an arbitrary Lie algebroid AA over MM and the leaves of the Lie algebroid foliation on MM associated with AA. Using these results, we show that a E1(M){\cal E}^1(M)-Dirac structure LL induces on every leaf FF of its characteristic foliation a E1(F){\cal E}^1(F)-Dirac structure LFL_F, which comes from a precontact structure or from a locally conformal presymplectic structure on FF. In addition, we prove that a Dirac structure L~\tilde{L} on M×RM\times \R can be obtained from LL and we discuss the relation between the leaves of the characteristic foliations of LL and L~\tilde{L}.Comment: 25 page

    Geometrization of Quantum Mechanics

    Full text link
    We show that it is possible to represent various descriptions of Quantum Mechanics in geometrical terms. In particular we start with the space of observables and use the momentum map associated with the unitary group to provide an unified geometrical description for the different pictures of Quantum Mechanics. This construction provides an alternative to the usual GNS construction for pure states.Comment: 16 pages. To appear in Theor. Math. Phys. Some typos corrected. Definition 2 in page 5 rewritte

    Effects of Electronic Correlations on the Thermoelectric Power of the Cuprates

    Full text link
    We show that important anomalous features of the normal-state thermoelectric power S of high-Tc materials can be understood as being caused by doping dependent short-range antiferromagnetic correlations. The theory is based on the fluctuation-exchange approximation applied to Hubbard model in the framework of the Kubo formalism. Firstly, the characteristic maximum of S as function of temperature can be explained by the anomalous momentum dependence of the single-particle scattering rate. Secondly, we discuss the role of the actual Fermi surface shape for the occurrence of a sign change of S as a function of temperature and doping.Comment: 4 pages, with eps figure
    corecore