32 research outputs found

    Polarization control of metal-enhanced fluorescence in hybrid assemblies of photosynthetic complexes and gold nanorods

    Get PDF
    Fluorescence imaging of hybrid nanostructures composed of a bacterial light-harvesting complex LH2 and Au nanorods with controlled coupling strength is employed to study the spectral dependence of the plasmon-induced fluorescence enhancement. Perfect matching of the plasmon resonances in the nanorods with the absorption bands of the LH2 complexes facilitates a direct comparison of the enhancement factors for longitudinal and transverse plasmon frequencies of the nanorods. We find that the fluorescence enhancement due to excitation of longitudinal resonance can be up to five-fold stronger than for the transverse one. We attribute this result, which is important for designing plasmonic functional systems, to a very different distribution of the enhancement of the electric field due to the excitation of the two characteristic plasmon modes in nanorods

    Sintesis dan Karakterisasi Sifat Optik Eosin Y@Metal- Organic Framework Zirkonium Naftalendikarboksilat

    Get PDF
    Eosin Y telah berhasil diembankan pada Metal-Organic Framework Zirkonium Naftalendikarboksilat (MOF Zr-NDC) dengan cara menambahkan Eosin Y dalam pelarut etanol (0,034 ml, 10-4 M) pada MOF Zr-NDC (0,3 g). Pengukuran Powder X-Ray Diffraction (PXRD) dilakukan untuk mengkonfirmasi pembentukan MOF Zr-NDC dengan puncak khas pada 2Ξ di 6.47 dan 7.45. Spektra UV-vis Diffuse Reflectance Spectra diperoleh dengan menggunakan spektrofotometer UV-vis. MOF Zr-NDC memberikan serapan pada 274 nm yang berhubungan dengan energi celah sebesar 4.32 eV, sedangkan Eosin Y menunjukkan serapan pada 524 nm. Di sisi lain, Eosin Y@MOF Zr-NDC menunjukkan puncak-puncak serapan pada 300, 357, dan 524 nm yang berkorelasi dengan energi celah masing-masing sebesar 3,65, 3,15, dan 2,19 e

    Absorption Enhancement in Peridinin–Chlorophyll–Protein Light-Harvesting Complexes Coupled to Semicontinuous Silver Film

    Get PDF
    We report on experimental and theoretical studies of plasmon-induced effects in a hybrid nanostructure composed of light-harvesting complexes and metallic nanoparticles in the form of semicontinuous silver film. The results of continuous-wave and time-resolved spectroscopy indicate that absorption of the light-harvesting complexes is strongly enhanced upon coupling with the metallic film spaced by 25 nm of a dielectric silica layer. This conclusion is corroborated by modeling, which confirms the morphology of the silver island film

    Relative binding affinities of chlorophylls in peridinin-chlorophyll-protein reconstituted with heterochlorophyllous mixtures

    No full text
    Peridinin-chlorophyll-protein (PCP), containing differently absorbing chlorophyll derivatives, are good models with which to study energy transfer among monomeric chlorophylls (Chls) by both bulk and single-molecule spectroscopy. They can be obtained by reconstituting the N-terminal domain of the protein (N-PCP) with peridinin and chlorophyll mixtures. Upon dimerization of these "half-mers, homo- and heterochlorophyllous complexes are generated, that correspond structurally to monomeric protomers of native PCP from Amphidinium carterae. Heterochlorophyllous complexes contain two different Chls in the two halves of the complete structure. Here, we report reconstitution of N-PCP with binary mixtures of Chl a, Chl b, and [3-acetyl]-Chl a. The ratios of the pigments were varied in the reconstitution mixture, and relative binding constants were determined from quantification of these pigments in the reconstituted PCPs. We find higher affinities for both Chl b and [3-acetyl]-Chl a than for the native pigment, Chl a.6 page(s

    Peridinin-chlorophyll-protein reconstituted with chlorophyll mixtures : preparation, bulk and single molecule spectoscopy

    Get PDF
    Reconstitution of the 16kDa N-terminal domain of the peridinin–chlorophyll–protein, N-PCP, with mixtures of chlorophyll a (Chl a) and Chl b, resulted in 32kDa complexes containing two pigment clusters, each bound to one N-PCP. Besides homo-chlorophyllous complexes, hetero-chlorophyllous ones were obtained that contain Chl a in one pigment cluster, and Chl b in the other. Binding of Chl b is stronger than that of the native pigment, Chl a. Energy transfer from Chl b to Chl a is efficient, but there are only weak interactions between the two pigments. Individual homo- and hetero-chlorophyllous complexes were investigated by single molecule spectroscopy using excitation into the peridinin absorption band and scanning of the Chl fluorescence, the latter show frequently well resolved emissions of the two pigments.6 page(s

    Energy transfer from conjugated polymer to bacterial light-harvesting complex

    Get PDF
    Energy transfer from a conjugated polymer blend (poly(9,9-dioctylfluorenyl-2,7-diyl):poly (2-methoxy-5-(2-ethylhexyloxy)-1, 4-phenylenevinylene) to a light-harvesting complex 2 from purple bacteria has been demonstrated using time-resolved fluorescence spectroscopy. For our hybrid nanostructure, we observe a 30% reduction of the fluorescence lifetime of the polymer emission as compared to the pure polymer layer. This result is an important step towards integrating naturally evolved biomolecules with synthetic materials into biohybrid organic electronic systems

    Monitoring fluorescence of individual chromophores in peridininchlorophyll-protein complex using single molecule spectroscopy

    Get PDF
    Single molecule spectroscopy experiments are reported for native peridinin-chlorophyll a-protein (PCP) complexes, and three reconstituted light-harvesting systems, where an N-terminal construct of native PCP from Amphidinium carterae has been reconstituted with chlorophyll (Chl) mixtures: with Chl a, with Chl b and with both Chl a and Chl b. Using laser excitation into peridinin (Per) absorption band we take advantage of sub-picosecond energy transfer from Per to Chl that is order of magnitude faster than the Förster energy transfer between the Chl molecules to independently populate each Chl in the complex. The results indicate that reconstituted PCP complexes contain only two Chl molecules, so that they are spectroscopically equivalent to monomers of native-trimeric-PCP and do not aggregate further. Through removal of ensemble averaging we are able to observe for single reconstituted PCP complexes two clear steps in fluorescence intensity timetraces attributed to subsequent bleaching of the two Chl molecules. Importantly, the bleaching of the first Chl affects neither the energy nor the intensity of the emission of the second one. Since in strongly interacting systems Chl is a very efficient quencher of the fluorescence, this behavior implies that the two fluorescing Chls within a PCP monomer interact very weakly with each other which makes it possible to independently monitor the fluorescence of each individual chromophore in the complex. We apply this property, which distinguishes PCP from other light-harvesting systems, to measure the distribution of the energy splitting between two chemically identical Chl a molecules contained in the PCP monomer that reaches 280 cm- 1. In agreement with this interpretation, stepwise bleaching of fluorescence is also observed for native PCP complexes, which contain six Chls. Most PCP complexes reconstituted with both Chl a and Chl b show two emission lines, whose wavelengths correspond to the fluorescence of Chl a and Chl b. This is a clear proof that these two different chromophores are present in a single PCP monomer. Single molecule fluorescence studies of PCP complexes, both native and artificially reconstituted with chlorophyll mixtures, provide new and detailed information necessary to fully understand the energy transfer in this unique light-harvesting system.9 page(s
    corecore