25 research outputs found

    How to use magnetic field information for coronal loop identification?

    Full text link
    The structure of the solar corona is dominated by the magnetic field because the magnetic pressure is about four orders of magnitude higher than the plasma pressure. Due to the high conductivity the emitting coronal plasma (visible e.g. in SOHO/EIT) outlines the magnetic field lines. The gradient of the emitting plasma structures is significantly lower parallel to the magnetic field lines than in the perpendicular direction. Consequently information regarding the coronal magnetic field can be used for the interpretation of coronal plasma structures. We extrapolate the coronal magnetic field from photospheric magnetic field measurements into the corona. The extrapolation method depends on assumptions regarding coronal currents, e.g. potential fields (current free) or force-free fields (current parallel to magnetic field). As a next step we project the reconstructed 3D magnetic field lines on an EIT-image and compare with the emitting plasma structures. Coronal loops are identified as closed magnetic field lines with a high emissivity in EIT and a small gradient of the emissivity along the magnetic field.Comment: 14 pages, 3 figure

    Frequency drifts of 3-min oscillations in microwave and EUV emission above sunspots

    Full text link
    We analyse 3-min oscillations of microwave and EUV emission generated at different heights of a sunspot atmosphere, studying the amplitude and frequency modulation of the oscillations, and its relationship with the variation of the spatial structure of the oscillations. High-resolution data obtained with the Nobeyama Radioheliograph, TRACE and SDO/AIA are analysed with the use of the Pixelised Wavelet Filtering and wavelet skeleton techniques. 3-min oscillations in sunspots appear in the form of repetitive trains of the duration 8-20 min (13 min in average). The typical interval between the trains is 30-50 min. The oscillation trains are transient in frequency and power. We detected a repetitive frequency drifts of 3-min oscillations during the development of individual trains. Wavelet analysis shows three types of the frequency drift: positive, negative and fluctuations without drift. The start and end of the drifts coincide with the start time and end of the train. The comparative study of 3-min oscillations in the sequences of microwave and EUV images show the appearance of new sources of the oscillations in sunspots during the development of the trains. These structures can be interpreted as waveguides that channel upward propagating waves, responsible for 3-min oscillations. A possible explanation of the observed properties is the operation of two simultaneous factors: dispersive evolution of the upwardly-propagating wave pulses and the non-uniformity of the distribution of the oscillation power over the sunspot umbra with different wave sources corresponding to different magnetic flux tubes with different physical conditions and line-of-sight angles.Comment: 12 pages, 11 figures, submitted to A&A, 201

    Observations of the Sun at Vacuum-Ultraviolet Wavelengths from Space. Part II: Results and Interpretations

    Full text link

    Analyzing high school students’ reasoning about electromagnetic induction

    Full text link
    Electromagnetic induction is an important, yet complex, physics topic that is a part of Croatian high school curriculum. Nine Croatian high school students of different abilities in physics were interviewed using six demonstration experiments from electromagnetism (three of them concerned the topic of electromagnetic induction). Students were asked to observe, describe, and explain the experiments. The analysis of students’ explanations indicated the existence of many conceptual and reasoning difficulties with the basic concepts of electromagnetism, and especially with recognizing and explaining the phenomenon of electromagnetic induction. Three student mental models of electromagnetic induction, formed during the interviews, which reoccurred among students, are described and analyzed within the knowledge-in-pieces framework

    Cenozoic granitoids in the Dinarides of southern Serbia: age of intrusion, isotope geochemistry, exhumation history and significance for the geodynamic evolution of the Balkan Peninsula

    Get PDF
    Two age groups were determined for the Cenozoic granitoids in the Dinarides of southern Serbia by high-precision single grain U–Pb dating of thermally annealed and chemically abraded zircons: (1) Oligocene ages (Kopaonik, Drenje, Z ˇ eljin) ranging from 31.7 to 30.6 Ma (2) Miocene ages (Golija and Polumir) at 20.58–20.17 and 18.06–17.74 Ma, respectively. Apatite fission-track central ages, modelling combined with zircon central ages and additionally, local structural observations constrain the subsequent exhumation history of the magmatic rocks. They indicate rapid cooling from above 300°C to ca. 80°C between 16 and 10 Ma for both age groups,  induced by extensional exhumation of the plutons located in the footwall of core complexes. Hence, Miocene magmatism and core-complex formation not only affected the Pannonian basin but also a part of the mountainous areas of the internal Dinarides. Based on an extensive set of existing age data combined with our own analyses, we propose a geodynamical model for the Balkan Peninsula: The Late Eocene to Oligocene magmatism, which affects the Adria derived lower plate units of the internal Dinarides, was caused by delamination of the Adriatic mantle from the overlying crust, associated with post-collisional convergence that propagated outward into the external Dinarides.  Miocene magmatism, on the other hand, is associated with core-complex formation along the southern margin of the Pannonian basin, probably associated with the W-directed subduction of the European lithosphere beneath the Carpathians and interfering with ongoing Dinaridic–Hellenic back-arc extension

    Towards Resilient Cities in Serbia

    Full text link
    The problems of climate change and the concepts of resilient cities and resilience to climate change have gained considerable attention and interest in Serbia over recent years, especially after the catastrophic floods that hit Serbia in 2014. Now the improvement of resilience in the face of natural, socioeconomic, and political uncertainty and risks has captured the attention of researchers and decision-makers in almost all disciplines and sectors. This paper, through an analysis of the literature on climate change, with a special focus on Serbia, as well as Serbian legal regulations, strategies and planning documents, will show the awareness and understanding of resilience in the Serbian planning policy arena. Special attention is paid to local governments and the issue of climate change, and the problem of how planners, planning policy and decision-makers take into account or deal with the risks that it presents
    corecore