140 research outputs found

    Transition Metal Catalyzed Hydroarylation of Multiple Bonds: Exploration of Second Generation Ruthenium Catalysts and Extension to Copper Systems

    Get PDF
    Catalysts provide foundational technology for the development of new materials and can enhance the efficiency of routes to known materials. New catalyst technologies offer the possibility of reducing energy and raw material consumption as well as enabling chemical processes with a lower environmental impact. The rising demand and expense of fossil resources has strained national and global economies and has increased the importance of accessing more efficient catalytic processes for the conversion of hydrocarbons to useful products. The goals of the research are to develop and understand single-site homogeneous catalysts for the conversion of readily available hydrocarbons into useful materials. A detailed understanding of these catalytic reactions could lead to the development of catalysts with improved activity, longevity and selectivity. Such transformations could reduce the environmental impact of hydrocarbon functionalization, conserve energy and valuable fossil resources and provide new technologies for the production of liquid fuels. This project is a collaborative effort that incorporates both experimental and computational studies to understand the details of transition metal catalyzed C-H activation and C-C bond forming reactions with olefins. Accomplishments of the current funding period include: (1) We have completed and published studies of C-H activation and catalytic olefin hydroarylation by TpRu{l_brace}P(pyr){sub 3}{r_brace}(NCMe)R (pyr = N-pyrrolyl) complexes. While these systems efficiently initiate stoichiometric benzene C-H activation, catalytic olefin hydroarylation is hindered by inhibition of olefin coordination, which is a result of the steric bulk of the P(pyr){sub 3} ligand. (2) We have extended our studies of catalytic olefin hydroarylation by TpRu(L)(NCMe)Ph systems to L = P(OCH{sub 2}){sub 3}CEt. Thus, we have now completed detailed mechanistic studies of four systems with L = CO, PMe{sub 3}, P(pyr){sub 3} and P(OCH{sub 2}){sub 3}CEt, which has provided a comprehensive understanding of the impact of steric and electronic parameters of 'L' on the catalytic hydroarylation of olefins. (3) We have completed and published a detailed mechanistic study of stoichiometric aromatic C-H activation by TpRu(L)(NCMe)Ph (L = CO or PMe{sub 3}). These efforts have probed the impact of functionality para to the site of C-H activation for benzene substrates and have allowed us to develop a detailed model of the transition state for the C-H activation process. These results have led us to conclude that the C-H bond cleavage occurs by a {sigma}-bond metathesis process in which the C-H transfer is best viewed as an intramolecular proton transfer. (4) We have completed studies of Ru complexes possessing the N-heterocyclic carbene IMes (IMes = 1,3-bis-(2,4,6-trimethylphenyl)imidazol-2-ylidene). One of these systems is a unique four-coordinate Ru(II) complex that catalyzes the oxidative hydrophenylation of ethylene (in low yields) to produce styrene and ethane (utilizing ethylene as the hydrogen acceptor) as well as the hydrogenation of olefins, aldehydes and ketones. These results provide a map for the preparation of catalysts that are selective for oxidative olefin hydroarylation. (5) The ability of TpRu(PMe{sub 3})(NCMe)R systems to activate sp{sup 3} C-H bonds has been demonstrated including extension to subsequent C-C bond forming steps. These results open the door to the development of catalysts for the functionalization of more inert C-H bonds. (6) We have discovered that Pt(II) complexes supported by simple nitrogen-based ligands serve as catalysts for the hydroarylation of olefins. Given the extensive studies of Pt-based catalytic C-H activation, we believe these results will provide an entry point into an array of possible catalysts for hydrocarbon functionalization

    Ligand Lone-Pair Influence on Hydrocarbon C-H Activation: A Computational Perspective

    Get PDF
    Mid to late transition metal complexes that break hydrocarbon C-H bonds by transferring the hydrogen to a heteroatom ligand while forming a metal-alkyl bond offer a promising strategy for C-H activation. Here we report a density functional (B3LYP, M06, and X3LYP) analysis of cis-(acac)_2MX and TpM(L)X (M=Ir, Ru, Os, and Rh; acac=acetylacetonate, Tp=tris(pyrazolyl)-borate; X=CH_3, OH, OMe, NH_2, and NMe_2) systems for methane C-H bond activation reaction kinetics and thermodynamics.We address the importance of whether a ligand lone pair provides an intrinsic kinetic advantage through possible electronic d_π-p_π repulsions for M-OR and M-NR_2 systems versus M-CH_3 systems. This involves understanding the energetic impact of the X ligand group on ligand loss, C-H bond coordination, and C-H bond cleavage steps as well as understanding how the nucleophilicity of the ligand X group, the electrophilicity of the transition metal center, and cis-ligand stabilization effect influence each of these steps.We also explore how spectator ligands and second- versus third-row transition metal centers impact the energetics of each of these C-H activation steps

    The para-substituent effect and pH-dependence of the organometallic Baeyer–Villiger oxidation of rhenium–carbon bonds

    Get PDF
    We studied the Baeyer–Villiger (BV) type oxidation of phenylrhenium trioxide (PTO) by H2O2 in the aqueous phase using Quantum Mechanics (density functional theory with the M06 functional) focusing on how the solution pH and the para-substituent affect the Gibbs free energy surfaces. For both PTO and MTO (methylrhenium trioxide) cases, we find that for pH > 1 the BV pathway having OH− as the leaving group is lower in energy than the one involving simultaneous protonation of hydroxide. We also find that during this organometallic BV oxidation, the migrating phenyl is a nucleophile so that substituting functional groups in the para-position of phenyl with increased electron-donating character lowers the migration barrier, just as in organic BV reactions. However, this substituent effect also pushes electron density to Re, impeding HOO− coordination and slowing down the reaction. This is in direct contrast to the organic analog, in which para-substitution has an insignificant influence on 1,2-addition of peracids. Due to the competition of the two opposing effects and the dependence of the resting state on pH and concentration, the reaction rate of the organometallic BV oxidation is surprisingly unaffected by para-substitution

    Functionalization of Rhenium Aryl Bonds by O-Atom Transfer

    Get PDF
    Aryltrioxorhenium (ArReO_3) has been demonstrated to show rapid oxy-functionalization upon reaction with O-atom donors, YO, to selectively generate the corresponding phenols in near quantitative yields. (18)^O-Labeling experiments show that the oxygen in the products is exclusively from YO. DFT studies reveal a 10.7 kcal/mol barrier (Ar = Ph) for oxy-functionalization with H_2O_2 via a Baeyer-Villiger type mechanism involving nudeophilic attack of the aryl group on an electrophilic oxygen of YO coordinated to rhenium

    DFT Virtual Screening Identifies Rhodium–Amidinate Complexes As Potential Homogeneous Catalysts for Methane-to-Methanol Oxidation

    Get PDF
    In the search for new organometallic catalysts for low-temperature selective conversion of CH_4 to CH_3OH, we apply quantum mechanical virtual screening to select the optimum combination of ligand and solvent on rhodium to achieve low barriers for CH_4 activation and functionalization to recommend for experimental validation. Here, we considered Rh because its lower electronegativity compared with Pt and Pd may allow it to avoid poisoning by coordinating media. We report quantum mechanical predictions (including implicit and explicit solvation) of the mechanisms for Rh^(III)(NN) and Rh^(III)(NN^F) complexes [where (NN) = bis(N-phenyl)benzylamidinate and (NN^F) = bis(N-pentafluorophenyl)pentafluorobenzylamidinate] to catalytically activate and functionalize methane using trifluoroacetic acid (TFAH) or water as a solvent. In particular, we designed the (NN^F) ligand as a more electrophilic analogue to the (NN) ligand, and our results predict the lowest transition state barrier (ΔG‡ = 27.6 kcal/mol) for methane activation in TFAH from a pool of four different classes of ligands. To close the catalytic cycle, the functionalization of methylrhodium intermediates was also investigated, involving carbon–oxygen bond formation via S_N2 attack by solvent, or S_R2 attack by a vanadium oxo. Activation barriers for the functionalization of methylrhodium intermediates via nucleophilic attack are lower when the solvent is water, but CH_4 activation barriers are higher. In addition, we have found a correlation between CH_4 activation barriers and rhodium–methyl bond energies that allow us to predict the activation transition state energies for future ligands, as well

    Rhodium Bis(quinolinyl)benzene Complexes for Methane Activation and Functionalization

    Get PDF
    A series of rhodium(III) bis(quinolinyl)benzene (bisq^x) complexes was studied as candidates for the homogeneous partial oxidation of methane. Density functional theory (DFT) (M06 with Poisson continuum solvation) was used to investigate a variety of (bisq^x) ligand candidates involving different functional groups to determine the impact on Rh^(III)(bisq^x)-catalyzed methane functionalization. The free energy activation barriers for methane C H activation and Rh–methyl functionalization at 298 K and 498 K were determined. DFT studies predict that the best candidate for catalytic methane functionalization is Rh^(III) coordinated to unsubstituted bis(quinolinyl)benzene (bisq). Support is also found for the prediction that the η^2-benzene coordination mode of (bisq^x) ligands on Rh encourages methyl group functionalization by serving as an effective leaving group for S_N2 and S_R2 attack

    Proton or Metal? The H/D Exchange of Arenes in Acidic Solvents

    Get PDF
    The H/D exchange of arenes in acidic media by transition-metal and main-group-metal complexes and common inorganic salts was studied. The influence of Lewis acidity, anions, charge, and ligands was evaluated. The results indicate that the determination of H/D exchange activity in acidic media is not related to the formation of metal–carbon bonds (i.e., C–H activation). The combined experimental data (regioselectivity, activation energy, kinetics, isotope effects, solvent effects) and DFT calculations point toward a proton catalysis mechanism. Thus, highly Lewis acidic metal compounds, such as aluminum(III) triflate, were extraordinarily active for the H/D exchange reactions. Indeed, the degree of H/D exchange reactivity allows for a comparative measurement of Lewis acidities

    Long-Range C–H Bond Activation by Rh^(III)-Carboxylates

    Get PDF
    Traditional C–H bond activation by a concerted metalation–deprotonation (CMD) mechanism involves precoordination of the C–H bond followed by deprotonation from an internal base. Reported herein is a “through-arene” activation of an uncoordinated benzylic C–H bond that is 6 bonds away from a Rh^(III) ion. The mechanism, which was investigated by experimental and DFT studies, proceeds through a dearomatized xylene intermediate. This intermediate was observed spectroscopically upon addition of a pyridine base to provide a thermodynamic trap
    • 

    corecore