513 research outputs found

    350 Micron Observations of Ultraluminous Infrared Galaxies at Intermediate Redshifts

    Get PDF
    We present 350micron observations of 36 ultraluminous infrared galaxies (ULIRGs) at intermediate redshifts (0.089 <= z <= 0.926) using the Submillimeter High Angular Resolution Camera II (SHARC-II) on the Caltech Submillimeter Observatory (CSO). In total, 28 sources are detected at S/N >= 3, providing the first flux measurements longward of 100micron for a statistically significant sample of ULIRGs in the redshift range of 0.1 < z < 1.0. Combining our 350micron flux measurements with the existing IRAS 60 and 100micron data, we fit a single-temperature model to the spectral energy distribution (SED), and thereby estimate dust temperatures and far-IR luminosities. Assuming an emissivity index of beta = 1.5, we find a median dust temperature and far-IR luminosity of Td = 42.8+-7.1K and log(Lfir/Lsolar) = 12.2+-0.5, respectively. The far-IR/radio correlation observed in local star-forming galaxies is found to hold for ULIRGs in the redshift range 0.1 < z < 0.5, suggesting that the dust in these sources is predominantly heated by starbursts. We compare the far-IR luminosities and dust temperatures derived for dusty galaxy samples at low and high redshifts with our sample of ULIRGs at intermediate redshift. A general Lfir-Td relation is observed, albeit with significant scatter, due to differing selection effects and variations in dust mass and grain properties. The relatively high dust temperatures observed for our sample compared to that of high-z submillimeter-selected starbursts with similar far-IR luminosities suggest that the dominant star formation in ULIRGs at moderate redshifts takes place on smaller spatial scales than at higher redshifts.Comment: (24 pages in preprint format, 1 table, 7 figures, accepted for publication in ApJ

    The CHESS spectral survey of star forming regions: Peering into the protostellar shock L1157-B1 - II. Shock dynamics

    Get PDF
    Context. The outflow driven by the low-mass class 0 protostar L1157 is the prototype of the so-called chemically active outflows. The bright bowshock B1 in the southern outflow lobe is a privileged testbed of magneto-hydrodynamical (MHD) shock models, for which dynamical and chemical processes are strongly interdependent. Aims. We present the first results of the unbiased spectral survey of the L1157-B1 bowshock, obtained in the framework of the key program “Chemical HErschel Surveys of star forming regions” (CHESS). The main aim is to trace the warm and chemically enriched gas and to infer the excitation conditions in the shock region. Methods. The CO 5-4 and o-H2_O 1_(10)–1_(01) lines have been detected at high-spectral resolution in the unbiased spectral survey of the HIFI-band 1b spectral window (555–636 GHz), presented by Codella et al. in this volume. Complementary ground-based observations in the submm window help establish the origin of the emission detected in the main-beam of HIFI and the physical conditions in the shock. Results. Both lines exhibit broad wings, which extend to velocities much higher than reported up to now. We find that the molecular emission arises from two regions with distinct physical conditions : an extended, warm (100 K), dense (3 × 10^5 cm^(-3)) component at low-velocity, which dominates the water line flux in Band 1; a secondary component in a small region of B1 (a few arcsec) associated with high-velocity, hot (>400 K) gas of moderate density ((1.0–3.0) × 10^4 cm^(-3)), which appears to dominate the flux of the water line at 179μm observed with PACS. The water abundance is enhanced by two orders of magnitude between the low- and the high-velocity component, from 8 × 10^(-7) up to 8 × 10^(-5). The properties of the high-velocity component agree well with the predictions of steady-state C-shock models

    Further multiwavelength observations of the SSA22 Ly_alpha emitting `blob'

    Full text link
    We present new follow-up observations of the sub-mm luminous Ly_alpha-emitting object in the SSA22 z=3.09 galaxy overdensity, referred to as `Blob 1' by Steidel et al.(2000). In particular we discuss high resolution Hubble Space Telescope optical imaging, Owens Valley Radio Observatory spectral imaging, Keck spectroscopy, VLA 20cm radio continuum imaging, and Chandra X-ray observations. We also present a more complete analysis of the existing James Clerk Maxwell Telescope sub-mm data. We detect several optical continuum components which may be associated with the core of the submillimeter emitting region. A radio source at the position of one of the HST components (22:17:25.94, +00:12:38.9) identifies it as the likely counterpart to the submillimeter source. We also tentatively detect the CO(4-3) molecular line, centered on the radio position. We use the CO(4-3) intensity to estimate a limit on the gas mass for the system. The optical morphology of sources within the Ly_alpha cloud appears to be filamentary, while the optical source identified with the radio source has a dense knot which may be an AGN or compact starburst. We obtain a Keck-LRIS spectrum of this object, despite its faintness (R=26.8). The spectrum reveals weak Ly_alpha emission, but no other obvious features, suggesting that the source is not an energetic AGN (or that it is extremely obscured). We use non-detections in deep Chandra X-ray images to constrain the nature of the `Blob'. Although conclusive evidence regarding the nature of the object remains hard to obtain at this redshift, the evidence presented here is at least consistent with a dust-obscured AGN surrounded by a starburst situated at the heart of this giant Ly_alpha cloud.Comment: 8 pages, 9figs (low res), to appear in ApJ, for higher res figures, http://www.submm.caltech.edu/~schapman/sa22_sept4.ps.g

    MIPS J142824.0+352619: A Hyperluminous Starburst Galaxy at z=1.325

    Full text link
    Using the SHARC-II camera at the Caltech Submillimeter Observatory to obtain 350 micron images of sources detected with the MIPS instrument on Spitzer, we have discovered a remarkable object at z=1.325+/-0.002 with an apparent Far-Infrared luminosity of 3.2(+/-0.7) x 10^13 Lsun. Unlike other z>1 sources of comparable luminosity selected from mid-IR surveys, MIPS J142824.0+352619 lacks any trace of AGN activity, and is likely a luminous analog of galaxies selected locally by IRAS, or at high redshift in the submillimeter. This source appears to be lensed by a foreground elliptical galaxy at z=1.034, although the amplification is likely modest (~10). We argue that the contribution to the observed optical/Near-IR emission from the foreground galaxy is small, and hence are able to present the rest-frame UV through radio Spectral Energy Distribution of this galaxy. Due to its unusually high luminosity, MIPS J142824.0+352619 presents a unique chance to study a high redshift dusty starburst galaxy in great detail.Comment: 6 pages, 3 figures, accepted for publication in Ap
    corecore