1,388 research outputs found
Evaluation of methods using topology and integral geometry to assess wettability.
HYPOTHESIS: The development of high-resolution in situ imaging has allowed contact angles to be measured directly inside porous materials. We evaluate the use of concepts in integral geometry to determine contact angle. Specifically, we test the hypothesis that it is possible to determine an average contact angle from measurements of the Gaussian curvature of the fluid/fluid meniscus using the Gauss-Bonnet theorem. THEORY AND SIMULATION: We show that it is not possible to unambiguously determine an average contact angle from the Gauss-Bonnet theorem. We instead present an approximate relationship: 2Ďn(1-cosθ)=4Ď-âŤÎşG12dS12, where n is the number of closed loops of the three-phase contact line where phases 1 and 2 contact the surface, θ is the average contact angle, while ÎşG12 is the Gaussian curvature of the fluid meniscus which is integrated over its surface S12. We then use the results of pore-scale lattice Boltzmann simulations to assess the accuracy of this approach to determine a representative contact angle for two-phase flow in porous media. FINDINGS: We show that in simple cases with a flat solid surface, the approximate expression works well. When applied to simulations on pore space images, the equation provides a robust estimate of contact angle, accurate to within 3°, when averaged over many fluid clusters, although individual values can have significant errors because of the approximations used in the calculation
Recommended from our members
Transnational Socio-economic Justice and the Right of Resistance
This article assesses Thomas Pogge's recent argument that it is sometimes justifiable to harm innocent persons in light of his claims about the causes of global poverty. It argues that if Pogge's two theses are correct then a third thesis follows: that those immiserated by the international system can legitimately resist the institutions responsible for the systemic violations of human rights, even at the cost of grievously harming innocent persons. This article does not assess the validity of Pogge's theses, but draws attention to a neglected topic in the debate on transnational economic justice: the right of resistance
Review: Marine natural products
This review covers the literature published in 2003 for marine natural products, with 619 citations (413 for the period January to December 2003) referring to compounds isolated from marine microorganisms and phytoplankton, green algae, brown algae, red algae, sponges, coelenterates, bryozoans, molluscs, tunicates and echinoderms. The emphasis is on new compounds (656 for 2003), together with their relevant biological activities, source organisms and country of origin. Biosynthetic studies or syntheses that lead to the revision of structures or stereochemistries have been included (78), including any ďŹrst total syntheses of a marine natural product
Pore-scale modeling of two-phase flow: a comparison of the generalized network model to direct numerical simulation
Despite recent advances in pore-scale modeling of two-phase flow through porous media, the relative strengths and limitations of various modeling approaches have been largely unexplored. In this work, two-phase flow simulations from the generalized network model (GNM) [Phys. Rev. E 96, 013312 (2017)2470-004510.1103/PhysRevE.96.013312; Phys. Rev. E 97, 023308 (2018)2470-004510.1103/PhysRevE.97.023308] are compared with a recently developed lattice-Boltzmann model (LBM) [Adv. Water Resour. 116, 56 (2018)0309-170810.1016/j.advwatres.2018.03.014; J. Colloid Interface Sci. 576, 486 (2020)0021-979710.1016/j.jcis.2020.03.074] for drainage and waterflooding in two samples-a synthetic beadpack and a micro-CT imaged Bentheimer sandstone-under water-wet, mixed-wet, and oil-wet conditions. Macroscopic capillary pressure analysis reveals good agreement between the two models, and with experiments, at intermediate saturations but shows large discrepancy at the end-points. At a resolution of 10 grid blocks per average throat, the LBM is unable to capture the effect of layer flow which manifests as abnormally large initial water and residual oil saturations. Critically, pore-by-pore analysis shows that the absence of layer flow limits displacement to invasion-percolation in mixed-wet systems. The GNM is able to capture the effect of layers, and exhibits predictions closer to experimental observations in water and mixed-wet Bentheimer sandstones. Overall, a workflow for the comparison of pore-network models with direct numerical simulation of multiphase flow is presented. The GNM is shown to be an attractive option for cost and time-effective predictions of two-phase flow, and the importance of small-scale flow features in the accurate representation of pore-scale physics is highlighted
In situ characterization of immiscible three-phase flow at the pore scale for a water-wet carbonate rock
X-ray micro-tomography is used to image the pore-scale configurations of fluid in a rock saturated with three phases - brine, oil and gas - mimicking a subsurface reservoir, at high pressure and temperature. We determine pore occupancy during a displacement sequence that involves waterflooding, gas injection and water re-injection. In the water-wet sample considered, brine occupied the smallest pores, gas the biggest, while oil occupied pores of intermediate size and is displaced by both water and gas. Double displacement events have been observed, where gas displaces oil that displaces water or vice versa. The thickness of water and oil layers have been quantified, as have the contact angles between gas and oil, and oil and water. These results are used to explain the nature of trapping in three-phase flow, specifically how oil preferentially traps gas in the presence of water
Statistical phase estimation and error mitigation on a superconducting quantum processor
Quantum phase estimation (QPE) is a key quantum algorithm, which has been
widely studied as a method to perform chemistry and solid-state calculations on
future fault-tolerant quantum computers. Recently, several authors have
proposed statistical alternatives to QPE that have benefits on early
fault-tolerant devices, including shorter circuits and better suitability for
error mitigation techniques. However, practical implementations of the
algorithm on real quantum processors are lacking. In this paper we practically
implement statistical phase estimation on Rigetti's superconducting processors.
We specifically use the method of Lin and Tong [PRX Quantum 3, 010318 (2022)]
using the improved Fourier approximation of Wan et al. [PRL 129, 030503
(2022)], and applying a variational compilation technique to reduce circuit
depth. We then incorporate error mitigation strategies including zero-noise
extrapolation and readout error mitigation with bit-flip averaging. We propose
a simple method to estimate energies from the statistical phase estimation
data, which is found to improve the accuracy in final energy estimates by one
to two orders of magnitude with respect to prior theoretical bounds, reducing
the cost to perform accurate phase estimation calculations. We apply these
methods to chemistry problems for active spaces up to 4 electrons in 4
orbitals, including the application of a quantum embedding method, and use them
to correctly estimate energies within chemical precision. Our work demonstrates
that statistical phase estimation has a natural resilience to noise,
particularly after mitigating coherent errors, and can achieve far higher
accuracy than suggested by previous analysis, demonstrating its potential as a
valuable quantum algorithm for early fault-tolerant devices.Comment: 24 pages, 13 figure
Reconstruction of three-dimensional porous media using generative adversarial neural networks
To evaluate the variability of multi-phase flow properties of porous media at
the pore scale, it is necessary to acquire a number of representative samples
of the void-solid structure. While modern x-ray computer tomography has made it
possible to extract three-dimensional images of the pore space, assessment of
the variability in the inherent material properties is often experimentally not
feasible. We present a novel method to reconstruct the solid-void structure of
porous media by applying a generative neural network that allows an implicit
description of the probability distribution represented by three-dimensional
image datasets. We show, by using an adversarial learning approach for neural
networks, that this method of unsupervised learning is able to generate
representative samples of porous media that honor their statistics. We
successfully compare measures of pore morphology, such as the Euler
characteristic, two-point statistics and directional single-phase permeability
of synthetic realizations with the calculated properties of a bead pack, Berea
sandstone, and Ketton limestone. Results show that GANs can be used to
reconstruct high-resolution three-dimensional images of porous media at
different scales that are representative of the morphology of the images used
to train the neural network. The fully convolutional nature of the trained
neural network allows the generation of large samples while maintaining
computational efficiency. Compared to classical stochastic methods of image
reconstruction, the implicit representation of the learned data distribution
can be stored and reused to generate multiple realizations of the pore
structure very rapidly.Comment: 21 pages, 20 figure
Trends in the Discovery of New Marine Natural Products from Invertebrates over the Last Two Decades â Where and What Are We Bioprospecting?
It is acknowledged that marine invertebrates produce bioactive natural products that may be useful for developing new drugs. By exploring untapped geographical sources and/or novel groups of organisms one can maximize the search for new marine drugs to treat human diseases. The goal of this paper is to analyse the trends associated with the discovery of new marine natural products from invertebrates (NMNPI) over the last two decades. The analysis considers different taxonomical levels and geographical approaches of bioprospected species. Additionally, this research is also directed to provide new insights into less bioprospected taxa and world regions. In order to gather the information available on NMNPI, the yearly-published reviews of Marine Natural Products covering 1990â2009 were surveyed. Information on source organisms, specifically taxonomical information and collection sites, was assembled together with additional geographical information collected from the articles originally describing the new natural product. Almost 10000 NMNPI were discovered since 1990, with a pronounced increase between decades. Porifera and Cnidaria were the two dominant sources of NMNPI worldwide. The exception was polar regions where Echinodermata dominated. The majority of species that yielded the new natural products belong to only one class of each Porifera and Cnidaria phyla (Demospongiae and Anthozoa, respectively). Increased bioprospecting efforts were observed in the Pacific Ocean, particularly in Asian countries that are associated with the Japan Biodiversity Hotspot and the Kuroshio Current. Although results show comparably less NMNPI from polar regions, the number of new natural products per species is similar to that recorded for other regions. The present study provides information to future bioprospecting efforts addressing previously unexplored taxonomic groups and/or regions. We also highlight how marine invertebrates, which in some cases have no commercial value, may become highly valuable in the ongoing search for new drugs from the sea
A thermodynamically consistent characterization of wettability in porous media using high-resolution imaging
Conservation of energy is used to derive a thermodynamically-consistent contact angle, θt, when fluid phase 1 displaces phase 2 in a porous medium. Assuming no change in Helmholtz free energy between two local equilibrium states we find that Îa1scosθt=ÎşĎÎS1+Îa12, where a is the interfacial area per unit volume, Ď is the porosity, S is the saturation and Îş the curvature of the fluid-fluid interface. The subscript s denotes the solid, and we consider changes, Î, in saturation and area. With the advent of high-resolution time-resolved three-dimensional X-ray imaging, all the terms in this expression can be measured directly. We analyse imaging datasets for displacement of oil by water in a water-wet and a mixed-wet sandstone. For the water-wet sample, the curvature is positive and oil bulges into the brine with almost spherical interfaces. In the mixed-wet case, larger interfacial areas are found, as the oil resides in layers. The mean curvature is close to zero, but the interface tends to bulge into brine in one direction, while brine bulges into oil in the other. We compare θt with the values measured geometrically in situ on the pore-scale images, θg. The thermodynamic angle θt provides a robust and consistent characterization of wettability. For the water-wet case the calculated value of θt gives an accurate prediction of multiphase flow properties using pore-scale modelling
- âŚ