73 research outputs found

    Cellular site of gastric acid secretion.

    Full text link

    Demand for Zn2+ in Acid-Secreting Gastric Mucosa and Its Requirement for Intracellular Ca2+

    Get PDF
    Recent work has suggested that Zn(2+) plays a critical role in regulating acidity within the secretory compartments of isolated gastric glands. Here, we investigate the content, distribution and demand for Zn(2+) in gastric mucosa under baseline conditions and its regulation during secretory stimulation.Content and distribution of zinc were evaluated in sections of whole gastric mucosa using X-ray fluorescence microscopy. Significant stores of Zn(2+) were identified in neural elements of the muscularis, glandular areas enriched in parietal cells, and apical regions of the surface epithelium. In in vivo studies, extraction of the low abundance isotope, (70)Zn(2+), from the circulation was demonstrated in samples of mucosal tissue 24 hours or 72 hours after infusion (250 µg/kg). In in vitro studies, uptake of (70)Zn(2+) from media was demonstrated in isolated rabbit gastric glands following exposure to concentrations as low as 10 nM. In additional studies, demand of individual gastric parietal cells for Zn(2+) was monitored using the fluorescent zinc reporter, fluozin-3, by measuring increases in free intracellular concentrations of Zn(2+) {[Zn(2+)](i)} during exposure to standard extracellular concentrations of Zn(2+) (10 µM) for standard intervals of time. Under resting conditions, demand for extracellular Zn(2+) increased with exposure to secretagogues (forskolin, carbachol/histamine) and under conditions associated with increased intracellular Ca(2+) {[Ca(2+)](i)}. Uptake of Zn(2+) was abolished following removal of extracellular Ca(2+) or depletion of intracellular Ca(2+) stores, suggesting that demand for extracellular Zn(2+) increases and depends on influx of extracellular Ca(2+).This study is the first to characterize the content and distribution of Zn(2+) in an organ of the gastrointestinal tract. Our findings offer the novel interpretation, that Ca(2+) integrates basolateral demand for Zn(2+) with stimulation of secretion of HCl into the lumen of the gastric gland. Similar connections may be detectable in other secretory cells and tissues

    Nitric oxide-an endogenous inhibitor of gastric acid secretion in isolated human gastric glands

    Get PDF
    BACKGROUND: Endothelial nitric oxide synthase (eNOS) has previously been detected in the glandular part of the human gastric mucosa. Furthermore, nitric oxide (NO) has been shown to influence gastric secretion in various animal models. The present study was conducted to investigate the influence of exogenously and endogenously derived NO on histamine- and cAMP-stimulated gastric acid secretion in isolated human oxyntic glands. METHODS: Oxyntic glands were isolated from human gastric biopsies and were subsequently pre-treated with NO donors and nitric oxide synthase inhibitors and then exposed to histamine or dibutyryl-cAMP (db-cAMP). The secretory response of the glands was determined as accumulation of [(14)C]aminopyrine. RESULTS: The histamine- or db-cAMP-induced acid secretion was attenuated by L-arginine, a known source of endogenous NO, and also by the NO-donors sodium nitroprusside (SNP) and S-nitroso-N-acetyl-penicillamine (SNAP). Pre-treatment with either of the NOS inhibitors N(G)-nitro-L-arginine methyl ester (L-NAME) or N(G)-nitro-L-arginine (L-NNA) enhanced the secretory response. CONCLUSION: Our results show that NO inhibits gastric acid secretion in isolated human gastric glands, and that there is endogenous formation of NO within the glandular epithelium in the vicinity of the parietal cells

    Pentagastrin and gastric mucosal blood flow

    Full text link

    Ca2+-dependent secretagogue stimulation in isolated rabbit gastric glands

    Full text link

    Cation effects on acid secretion in rabbit gastric glands

    Full text link
    • …
    corecore