16 research outputs found
Computational problems in perfect phylogeny haplotyping: typing without calling the allele.
A haplotype is an m-long binary vector. The XOR-genotype of two haplotypes is the m-vector of their coordinate-wise XOR. We study the following problem: Given a set of XOR-genotypes, reconstruct their haplotypes so that the set of resulting haplotypes can be mapped onto a perfect phylogeny (PP) tree. The question is motivated by studying population evolution in human genetics, and is a variant of the perfect phylogeny haplotyping problem that has received intensive attention recently. Unlike the latter problem, in which the input is "full" genotypes, here we assume less informative input, and so may be more economical to obtain experimentally. Building on ideas of Gusfield, we show how to solve the problem in polynomial time, by a reduction to the graph realization problem. The actual haplotypes are not uniquely determined by that tree they map onto, and the tree itself may or may not be unique. We show that tree uniqueness implies uniquely determined haplotypes, up to inherent degrees of freedom, and give a sufficient condition for the uniqueness. To actually determine the haplotypes given the tree, additional information is necessary. We show that two or three full genotypes suffice to reconstruct all the haplotypes, and present a linear algorithm for identifying those genotypes
Haplotype inference constrained by plausible haplotype data
The haplotype inference problem (HIP) asks to find a set of haplotypes which resolve a given set of genotypes. This problem is of enormous importance in many practical fields, such as the investigation of diseases, or other types of genetic mutations. In order to find the haplotypes that are as close as possible to the real set of haplotypes that comprise the genotypes, two models have been suggested which by now have become widely accepted: The perfect phylogeny model and the pure parsimony model. All known algorithms up till now for the above problem may find haplotypes that are not necessarily plausible, i.e. very rare haplotypes or haplotypes that were never observed in the population. In order to overcome this disadvantage we study in this paper, for the first time, a new constrained version of HIP under the above mentioned models. In this new version, a pool of plausible haplotypes Ĥ is given together with the set of genotypes G, and the goal is to find a subset H ⊆ Ĥ that resolves G. For the constrained perfect phylogeny haplotyping (CPPH) problem we provide initial insights and polynomial-time algorithms for some restricted cases that help understanding the complexity of that problem. We also prove that the constrained parsimony haplotyping (CPH) problem is fixed parameter tractable by providing a parameterized algorithm that applies an interesting dynamic programming technique for solving the problem