15 research outputs found
BIOCHEMICAL VALUES OF BLOOD SERA FROM FARM ANIMALS
The significanceof the main biochemical values (proteins, lipids, carbohydrates, colouring agents, low-molecular nitrogenous and mineral matters) in blood sera (plasm) from farm animals is described in the paper. The change in the content (decrease or increase) of these indicators against the normal level can have different reasons: noncontagious and infectious diseases, imbalance of ration and feeding regime
COMBINING QuEChERS PREPARATION AND MICELLAR ELECTROKINETIC CHROMATOGRAPHY FOR DETERMINATION OF NEONICOTINOID INSECTICIDES IN FRUITS AND VEGETABLES
The possibility of electrophoretic separation and simultaneous determination of 7 neonicotinoids (imidacloprid, acetamiprid, thiamethoxam, thiacloprid, nitenpyram, clothianidin and dinotefuran) by micellar electrokinetic chromatography is shown. We propose a method for extracting and concentrating of neonicotinoid insecticides from vegetables and fruits using the sample preparation QuEChERS. The optimum compositions of the salting-out mixtures for extraction and sorbents for purification of the resulting extracts from vegetables and fruits were selected. Extraction of pesticides from the fruits was performed by acetonitrile using a mixture of sodium citrates (Na3C6H5O7Β·2H2O, Na2HC6H5O7Β·1,5Π2Π) with the following clean-up of 2 ml of the extract with sorbent PSA (100 mg) and anhydrous magnesium sulfate (300 mg). During the analysis of vegetables ethyl acetat was used as an extractant in the presence of anhydrous magnesium sulfate and sodium chloride with the following clean-up of 2 ml of the extract with sorbent PSA (100 mg) and graphitized carbon black (10 mg). In optimal conditions the recovery of the analytes ranged from 62 to 81 % for fruits and from 38 to 76 % for vegetables. The limits of quantification of neonicotinoids with a 10.0 g weight sample were from 0.25 to 0.65 mgΒ·kg-1 and from 0.04 to 0.13 mgΒ·kg-1 for fruits and vegetables respectively. The relative standard deviation of the test results does not exceed 0.1. Duration of analysis is 1-1.5 hr.Key words: neonicotinoids, micellar electrokinetic chromatography, QuEChERS, vegetables, fruits(Russian)DOI:http://dx.doi.org/10.15826/analitika.2015.19.1.003Β D.S. Bolβshakov1, V.G. Amelin1,2, T.B. Nikeshina1Β 1Federal Centre for Animals Health (ARRIAH), Yurβevets, Vladimir, Russian Federation2Vladimir State University named after Alexander and Nikolay Stoletovs, Vladimir, Russian Federatio
Combining QuEChERS preparation and micellar electrokinetic chromatography for determination of neonicotinoid insecticides in fruits and vegetables
ΠΠΎΠΊΠ°Π·Π°Π½Π° Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡΡ ΡΠ»Π΅ΠΊΡΡΠΎΡΠΎΡΠ΅ΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΡΠ°Π·Π΄Π΅Π»Π΅Π½ΠΈΡ ΠΈ ΠΎΠ΄Π½ΠΎΠ²ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠ³ΠΎ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΡΠ΅ΠΌΠΈ Π½Π΅ΠΎΠ½ΠΈΠΊΠΎΡΠΈΠ½ΠΎΠΈΠ΄ΠΎΠ² (ΠΈΠΌΠΈΠ΄Π°ΠΊΠ»ΠΎΠΏΡΠΈΠ΄Π°, Π°ΡΠ΅ΡΠ°ΠΌΠΈΠΏΡΠΈΠ΄Π°, ΡΠΈΠ°ΠΌΠ΅ΡΠΎΠΊΡΠ°ΠΌΠ°, ΡΠΈΠ°ΠΊΠ»ΠΎΠΏΡΠΈΠ΄Π°, Π½ΠΈΡΠ΅Π½ΠΏΠΈΡΠ°ΠΌΠ°, ΠΊΠ»ΠΎΡΠΈΠ°Π½ΠΈΠ΄ΠΈΠ½Π° ΠΈ Π΄ΠΈΠ½ΠΎΡΠ΅ΡΡΡΠ°Π½Π°) ΠΌΠ΅ΡΠΎΠ΄ΠΎΠΌ ΠΌΠΈΡΠ΅Π»Π»ΡΡΠ½ΠΎΠΉ ΡΠ»Π΅ΠΊΡΡΠΎΠΊΠΈΠ½Π΅ΡΠΈΡΠ΅ΡΠΊΠΎΠΉ Ρ
ΡΠΎΠΌΠ°ΡΠΎΠ³ΡΠ°ΡΠΈΠΈ. ΠΡΠ΅Π΄Π»ΠΎΠΆΠ΅Π½ ΡΠΏΠΎΡΠΎΠ± ΠΈΠ·Π²Π»Π΅ΡΠ΅Π½ΠΈΡ ΠΈ ΠΊΠΎΠ½ΡΠ΅Π½ΡΡΠΈΡΠΎΠ²Π°Π½ΠΈΡ Π½Π΅ΠΎΠ½ΠΈΠΊΠΎΡΠΈΠ½ΠΎΠΈΠ΄Π½ΡΡ
ΠΈΠ½ΡΠ΅ΠΊΡΠΈΡΠΈΠ΄ΠΎΠ² ΠΈΠ· ΠΎΠ²ΠΎΡΠ΅ΠΉ ΠΈ ΡΡΡΠΊΡΠΎΠ² Ρ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ Π΄ΠΈΡΠΏΠ΅ΡΡΠΈΠΎΠ½Π½ΠΎΠΉ ΡΠ²Π΅ΡΠ΄ΠΎΡΠ°Π·Π½ΠΎΠΉ ΡΠΊΡΡΡΠ°ΠΊΡΠΈΠΈ QuEChERS. ΠΡΠ±ΡΠ°Π½Ρ ΠΎΠΏΡΠΈΠΌΠ°Π»ΡΠ½ΡΠ΅ ΡΠΎΡΡΠ°Π²Ρ Π²ΡΡΠ°Π»ΠΈΠ²Π°ΡΡΠΈΡ
ΡΠΌΠ΅ΡΠ΅ΠΉ Π΄Π»Ρ ΡΠΊΡΡΡΠ°ΠΊΡΠΈΠΈ ΠΈ ΡΠΎΡΠ±Π΅Π½ΡΠΎΠ² Π΄Π»Ρ ΠΎΡΠΈΡΡΠΊΠΈ ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΡΡ
ΡΠΊΡΡΡΠ°ΠΊΡΠΎΠ². ΠΠ·Π²Π»Π΅ΡΠ΅Π½ΠΈΠ΅ ΠΏΠ΅ΡΡΠΈΡΠΈΠ΄ΠΎΠ² ΠΈΠ· ΡΡΡΠΊΡΠΎΠ² ΠΏΡΠΎΠ²ΠΎΠ΄ΠΈΠ»ΠΈ Π°ΡΠ΅ΡΠΎΠ½ΠΈΡΡΠΈΠ»ΠΎΠΌ Ρ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ ΡΠΌΠ΅ΡΠΈ ΡΠΈΡΡΠ°ΡΠΎΠ² Π½Π°ΡΡΠΈΡ ΠΈ ΠΎΡΠΈΡΡΠΊΠΎΠΉ 2 ΠΌΠ» ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΠΎΠ³ΠΎ ΡΠΊΡΡΡΠ°ΠΊΡΠ° ΡΠΌΠ΅ΡΡΡ 100 ΠΌΠ³ ΡΠΎΡΠ±Π΅Π½ΡΠ° PSA ΠΈ 300 ΠΌΠ³ Π±Π΅Π·Π²ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΡΡΠ»ΡΡΠ°ΡΠ° ΠΌΠ°Π³Π½ΠΈΡ. ΠΠ»Ρ Π°Π½Π°Π»ΠΈΠ·Π° ΠΎΠ²ΠΎΡΠ΅ΠΉ Π² ΠΊΠ°ΡΠ΅ΡΡΠ²Π΅ ΡΠΊΡΡΡΠ°Π³Π΅Π½ΡΠ° ΠΏΡΠΈΠΌΠ΅Π½ΡΠ»ΠΈ ΡΡΠΈΠ»Π°ΡΠ΅ΡΠ°Ρ Π² ΠΏΡΠΈΡΡΡΡΡΠ²ΠΈΠΈ Π±Π΅Π·Π²ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΡΡΠ»ΡΡΠ°ΡΠ° ΠΌΠ°Π³Π½ΠΈΡ ΠΈ Ρ
Π»ΠΎΡΠΈΠ΄Π° Π½Π°ΡΡΠΈΡ, Ρ ΠΏΠΎΡΠ»Π΅Π΄ΡΡΡΠ΅ΠΉ ΠΎΡΠΈΡΡΠΊΠΎΠΉ 2 ΠΌΠ» ΡΠΊΡΡΡΠ°ΠΊΡΠ° 100 ΠΌΠ³ ΡΠΎΡΠ±Π΅Π½ΡΠ° PSA ΠΈ 10 ΠΌΠ³ Π³ΡΠ°ΡΠΈΡΠΈΡΠΎΠ²Π°Π½Π½ΠΎΠΉ ΡΠ°ΠΆΠΈ. Π ΠΎΠΏΡΠΈΠΌΠ°Π»ΡΠ½ΡΡ
ΡΡΠ»ΠΎΠ²ΠΈΡΡ
ΡΡΠ΅ΠΏΠ΅Π½ΠΈ ΠΈΠ·Π²Π»Π΅ΡΠ΅Π½ΠΈΡ ΠΏΠ΅ΡΡΠΈΡΠΈΠ΄ΠΎΠ² Π²Π°ΡΡΠΈΡΡΡΡΡΡ ΠΎΡ 62 Π΄ΠΎ 81 % Π΄Π»Ρ ΡΡΡΠΊΡΠΎΠ² ΠΈ ΠΎΡ 38 Π΄ΠΎ 76 % Π΄Π»Ρ ΠΎΠ²ΠΎΡΠ΅ΠΉ. ΠΠΈΠΆΠ½ΠΈΠ΅ Π³ΡΠ°Π½ΠΈΡΡ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΠ΅ΠΌΡΡ
ΡΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΠΉ ΠΏΠ΅ΡΡΠΈΡΠΈΠ΄ΠΎΠ² ΠΏΡΠΈ ΠΌΠ°ΡΡΠ΅ ΠΏΡΠΎΠ±Ρ 10.0 Π³ Ρ ΡΡΠ΅ΡΠΎΠΌ ΠΊΠΎΠ½ΡΠ΅Π½ΡΡΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΡΠΎΡΡΠ°Π²ΠΈΠ»ΠΈ ΠΎΡ 0.25 Π΄ΠΎ 0.65 ΠΌΠ³/ΠΊΠ³ ΠΈ ΠΎΡ 0.04 Π΄ΠΎ 0.13 ΠΌΠ³/ΠΊΠ³ Π΄Π»Ρ ΡΡΡΠΊΡΠΎΠ² ΠΈ ΠΎΠ²ΠΎΡΠ΅ΠΉ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²Π΅Π½Π½ΠΎ. ΠΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎΠ΅ ΡΡΠ°Π½Π΄Π°ΡΡΠ½ΠΎΠ΅ ΠΎΡΠΊΠ»ΠΎΠ½Π΅Π½ΠΈΠ΅ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠΎΠ² Π°Π½Π°Π»ΠΈΠ·Π° Π½Π΅ ΠΏΡΠ΅Π²ΡΡΠ°Π΅Ρ 0.1. ΠΡΠΎΠ΄ΠΎΠ»ΠΆΠΈΡΠ΅Π»ΡΠ½ΠΎΡΡΡ Π°Π½Π°Π»ΠΈΠ·Π° - 1-1.5 Ρ.The possibility of electrophoretic separation and simultaneous determination of 7 neonicotinoids (imidacloprid, acetamiprid, thiamethoxam, thiacloprid, nitenpyram, clothianidin and dinotefuran) by micellar electrokinetic chromatography is shown. We propose a method for extracting and concentrating of neonicotinoid insecticides from vegetables and fruits using the sample preparation QuEChERS. The optimum compositions of the salting-out mixtures for extraction and sorbents for purification of the resulting extracts from vegetables and fruits were selected. Extraction of pesticides from the fruits was performed by acetonitrile using a mixture of sodium citrates (NaβCβHβ
OβΒ·2HβO, NaβHCβHβ
OβΒ·1,5ΠβΠ) with the following clean-up of 2 ml of the extract with sorbent PSA (100 mg) and anhydrous magnesium sulfate (300 mg). During the analysis of vegetables ethyl acetat was used as an extractant in the presence of anhydrous magnesium sulfate and sodium chloride with the following clean-up of 2 ml of the extract with sorbent PSA (100 mg) and graphitized carbon black (10 mg). In optimal conditions the recovery of the analytes ranged from 62 to 81 % for fruits and from 38 to 76 % for vegetables. The limits of quantification of neonicotinoids with a 10.0 g weight sample were from 0.25 to 0.65 mgΒ·kgβ»ΒΉ and from 0.04 to 0.13 mgΒ·kgβ»ΒΉ for fruits and vegetables respectively. The relative standard deviation of the test results does not exceed 0.1. Duration of analysis is 1-1.5 hr
Torovirus infection in animals: a review
Massive digestive disorders of neonatal calves, clinically manifested as diarrhea causing severe dehydration, toxemia, immunodeficiency and metabolic disorders, induce huge economic losses in animal husbandry. Etiopathogenetic lesions of the digestive organs are characterized by significant polymorphism, including a wide range of various (physiological, sanitary and infectious) factors. Massive gastroenteritises in neonatal calves are primarily caused by such infectious agents as viruses, bacteria and protozoa. Massive diarrheas are registered in 70β80% of newborn calves by the end of the first day of life. Diseased newborn calves die on day 5β10 and mortality ranges from 15 to 55%. Rotavirus, coronavirus, pestivirus, parvovirus, enterovirus and kobuvirus, along with bacteria, are most frequently detected in faecal samples collected from neonatal calves with diarrhea. Diagnostic and vaccine products for prevention of these infections have been developed in the Russian Federation. At the end of the 20th β the beginning of the 21st century a large number of cattle were imported to Russia from the countries affected with different contagious diseases (USA, Denmark, France, Slovakia, Austria, Hungary, Germany, the Netherlands, Australia, Finland, etc.). Despite the high activity and field effectiveness of vaccines against rotavirus and coronavirus infections and viral diarrhea, massive neonatal calf diarrheas causing significant economic losses were registered in a number of large-scale livestock farms. Torovirus as well as the above-mentioned pathogens were detected in fecal samples from diseased calves. This report provides data on torovirus infection indicating a wide geographical distribution of animal torovirus in many countries of the world. All this suggests the need to take into account torovirus infection when conducting epizootological investigations in farms affected with massive gastrointestinal diseases of neonatal calves
ΠΠΠΠΠ’ΠΠ€ΠΠΠΠ¦ΠΠ― Π ΠΠΠ ΠΠΠΠΠΠΠΠ Π’ΠΠΠ‘ΠΠΠΠΠ’ΠΠ Π‘ ΠΠ‘ΠΠΠΠ¬ΠΠΠΠΠΠΠΠ Π‘Π’ΠΠΠΠΠ Π’ΠΠΠ ΠΠΠΠΠΠΠ Π ΠΠΠ©ΠΠΠ«Π₯ ΠΠ ΠΠΠ£ΠΠ’ΠΠ₯, ΠΠ ΠΠΠΠΠΠΠ¬Π‘Π’ΠΠΠΠΠΠ Π‘Π«Π Π¬Π Π ΠΠΠ ΠΠΠ₯ ΠΠΠ’ΠΠΠΠ ΠΠ«Π‘ΠΠΠΠΠ€Π€ΠΠΠ’ΠΠΠΠΠ ΠΠΠΠΠΠ‘Π’ΠΠΠ Π₯Π ΠΠΠΠ’ΠΠΠ ΠΠ€ΠΠ / ΠΠ ΠΠΠ―ΠΠ ΠΠΠΠ’ΠΠΠ ΠΠΠ‘Π‘-Π‘ΠΠΠΠ’Π ΠΠΠΠ’Π ΠΠ ΠΠ«Π‘ΠΠΠΠΠ Π ΠΠΠ ΠΠ¨ΠΠΠΠ―
The methodology of identification and defining 300 toxicants of different classes in food products and food raw materials out of one sample have been proposed and realized by the TOF mass spectrometry of high resolution combined with high performance liquid chromatography and simple express sample preparation. Analytes included pesticides, mycotoxins and veterinary drugs.Β Simple sample preparation variations of milk, meat, fat, eggs, liver, kidney, feed and grain were suggested. Sample preparation involved the extraction with acetonitrile and removal of toxins fat by extraction with hexane. Under the electrospray ionization conditions most analytes develop protonated and deprotonated forms and rare adducts with ammonium, sodium and potassium. Identification of analytes was carried out using the Β«TargetAnalysis-1.3Β» program. Retention time, the accuracy of the masses of the ions and matching of the isotopic distribution (mSigma) were used as identification parameters. Low limits of detection of analytes were shown to be 0.0005-50 ng / ml. It was found that, given such low detection limits, the dilution of the extract with water to eliminate the matrix effect is possible. The lower limit of the defined content with the sample preparation and dilution amounted to 1 (500) mg / kg. The degree of extraction of analytes from the analyzed samples ranged from 78 to 110 % depending on the nature of the analyte and the matrix. A scheme for the identification and defining toxins by standard addition was proposed. The advantages of the standard addition method compared to the method of the calibration curve in the determination of toxicants in real samples were demonstrated. The relative standard deviation of the test results does not exceed 0.11. The identification period was 40-60 min, and the definition of identified toxicants was in the range of 2-3 hours.Keywords: high performance liquid chromatography, tandem quadrupole-of-flight mass spectrometry, food, feed, pesticides, mycotoxins, veterinary drugs, food and non-food dyes(Russian)DOI:Β http://dx.doi.org/10.15826/analitika.2015.19.2.010Β V.G. Amelin1,2, A.Π. Andoralov2,3, N.M. Volkova1,2, A.I. Korotkov2,3,T.B. Nikeshina1, I.I. Sidorov3, A.A. Timofeev1,21Federal Centre for Animal Health (ARRIAH), Yurievets, Vladimir, Russian Federation 2Vladimir State University, Vladimir, Russian Federation 3Bryansk Interregional Veterinary Laboratory, Bryansk region, p. Suponevo, Russian FederationΠΡΠ΅Π΄Π»ΠΎΠΆΠ΅Π½Π° ΠΌΠ΅ΡΠΎΠ΄ΠΎΠ»ΠΎΠ³ΠΈΡ ΠΈΠ΄Π΅Π½ΡΠΈΡΠΈΠΊΠ°ΡΠΈΠΈ ΠΈ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΠΈΠ· ΠΎΠ΄Π½ΠΎΠΉ Π½Π°Π²Π΅ΡΠΊΠΈ 300 ΡΠΎΠΊΡΠΈΠΊΠ°Π½ΡΠΎΠ² ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ
ΠΊΠ»Π°ΡΡΠΎΠ² Π² ΠΏΠΈΡΠ΅Π²ΡΡ
ΠΏΡΠΎΠ΄ΡΠΊΡΠ°Ρ
ΠΈ ΠΏΡΠΎΠ΄ΠΎΠ²ΠΎΠ»ΡΡΡΠ²Π΅Π½Π½ΠΎΠΌ ΡΡΡΡΠ΅ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠΌ Π²ΡΠ΅ΠΌΡΠΏΡΠΎΠ»Π΅ΡΠ½ΠΎΠΉ ΠΌΠ°ΡΡ-ΡΠΏΠ΅ΠΊΡΡΠΎΠΌΠ΅ΡΡΠΈΠΈ Π²ΡΡΠΎΠΊΠΎΠ³ΠΎ ΡΠ°Π·ΡΠ΅ΡΠ΅Π½ΠΈΡ Π² ΡΠΎΡΠ΅ΡΠ°Π½ΠΈΠΈ Ρ Π²ΡΡΠΎΠΊΠΎΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΠΉ ΠΆΠΈΠ΄ΠΊΠΎΡΡΠ½ΠΎΠΉ Ρ
ΡΠΎΠΌΠ°ΡΠΎΠ³ΡΠ°ΡΠΈΠ΅ΠΉ Β ΠΈ ΠΏΡΠΎΡΡΠΎΠΉ, ΡΠΊΡΠΏΡΠ΅ΡΡΠ½ΠΎΠΉ ΠΏΡΠΎΠ±ΠΎΠΏΠΎΠ΄Π³ΠΎΡΠΎΠ²ΠΊΠΎΠΉ. ΠΠ½Π°Π»ΠΈΡΡ β ΠΏΠ΅ΡΡΠΈΡΠΈΠ΄Ρ, ΠΌΠΈΠΊΠΎΡΠΎΠΊΡΠΈΠ½Ρ, Π°Π½ΡΠΈΠ±ΠΈΠΎΡΠΈΠΊΠΈ, ΠΊΡΠ°ΡΠΈΡΠ΅Π»ΠΈ Π² ΠΏΠΈΡΠ΅Π²ΡΡ
ΠΏΡΠΎΠ΄ΡΠΊΡΠ°Ρ
ΠΈ ΠΊΠΎΡΠΌΠ°Ρ
. ΠΡΠ΅Π΄Π»ΠΎΠΆΠ΅Π½Ρ ΠΏΡΠΎΡΡΡΠ΅ Π²Π°ΡΠΈΠ°Π½ΡΡ ΠΏΡΠΎΠ±ΠΎΠΏΠΎΠ΄Π³ΠΎΡΠΎΠ²ΠΊΠΈ ΠΌΠΎΠ»ΠΎΠΊΠ°, ΠΌΡΡΠ°, ΠΆΠΈΡΠ°, ΡΠΈΡ, ΠΏΠ΅ΡΠ΅Π½ΠΈ, ΠΏΠΎΡΠ΅ΠΊ, ΠΊΠΎΡΠΌΠΎΠ² ΠΈ Π·Π΅ΡΠ½Π°. ΠΡΠΎΠ±ΠΎΠΏΠΎΠ΄Π³ΠΎΡΠΎΠ²ΠΊΠ° Π²ΠΊΠ»ΡΡΠ°Π΅Ρ ΡΠΊΡΡΡΠ°ΠΊΡΠΈΡ ΡΠΎΠΊΡΠΈΠΊΠ°Π½ΡΠΎΠ² Π°ΡΠ΅ΡΠΎΠ½ΠΈΡΡΠΈΠ»ΠΎΠΌ ΠΈ ΡΠ΄Π°Π»Π΅Π½ΠΈΠ΅ ΠΆΠΈΡΠΎΠ² ΡΠΊΡΡΡΠ°ΠΊΡΠΈΠ΅ΠΉ Π³Π΅ΠΊΡΠ°Π½ΠΎΠΌ. Π ΡΡΠ»ΠΎΠ²ΠΈΡΡ
ΡΠ»Π΅ΠΊΡΡΠΎΡΠ°ΡΠΏΡΠ»ΠΈΡΠ΅Π»ΡΠ½ΠΎΠΉ ΠΈΠΎΠ½ΠΈΠ·Π°ΡΠΈΠΈ Π±ΠΎΠ»ΡΡΠΈΠ½ΡΡΠ²ΠΎ Π°Π½Π°Π»ΠΈΡΠΎΠ² ΠΎΠ±ΡΠ°Π·ΡΡΡ ΠΏΡΠΎΡΠΎΠ½ΠΈΡΠΎΠ²Π°Π½Π½ΡΠ΅ ΠΈ Π΄Π΅ΠΏΡΠΎΡΠΎΠ½ΠΈΡΠΎΠ²Π°Π½Π½ΡΠ΅ ΡΠΎΡΠΌΡ, ΠΈ ΡΠ΅Π΄ΠΊΠΎ Π²ΡΡΡΠ΅ΡΠ°ΡΡΡΡ Π°Π΄Π΄ΡΠΊΡΡ Ρ Π°ΠΌΠΌΠΎΠ½ΠΈΠ΅ΠΌ, Π½Π°ΡΡΠΈΠ΅ΠΌ ΠΈ ΠΊΠ°Π»ΠΈΠ΅ΠΌ. ΠΠ΄Π΅Π½ΡΠΈΡΠΈΠΊΠ°ΡΠΈΡ Π°Π½Π°Π»ΠΈΡΠΎΠ² ΠΏΡΠΎΠ²Π΅Π΄Π΅Π½Π° Ρ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ ΠΏΡΠΎΠ³ΡΠ°ΠΌΠΌΡ Β«TargetAnalysis-1.3Β». ΠΠ΄Π΅Π½ΡΠΈΡΠΈΠΊΠ°ΡΠΈΠΎΠ½Π½ΡΠΌΠΈ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠ°ΠΌΠΈ ΡΠ»ΡΠΆΠΈΠ»ΠΈ Π²ΡΠ΅ΠΌΡ ΡΠ΄Π΅ΡΠΆΠΈΠ²Π°Π½ΠΈΡ, ΡΠΎΡΠ½ΠΎΡΡΡ ΠΈΠ·ΠΌΠ΅ΡΠ΅Π½Π½ΡΡ
ΠΌΠ°ΡΡ ΠΈΠΎΠ½ΠΎΠ² ΠΈ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΠΈΠ΅ ΠΈΠ·ΠΎΡΠΎΠΏΠ½ΠΎΠΌΡ ΡΠ°ΡΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ (mSigma). ΠΠΎΠΊΠ°Π·Π°Π½Ρ Π½ΠΈΠ·ΠΊΠΈΠ΅ ΠΏΡΠ΅Π΄Π΅Π»Ρ ΠΎΠ±Π½Π°ΡΡΠΆΠ΅Π½ΠΈΡ Π°Π½Π°Π»ΠΈΡΠΎΠ²Β (0.0005 - 50 Π½Π³/ΠΌΠ»). Π£ΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½ΠΎ, ΡΡΠΎ Ρ ΡΡΠ΅ΡΠΎΠΌ ΡΡΠΎΠ»Ρ Π½ΠΈΠ·ΠΊΠΈΡ
ΠΏΡΠ΅Π΄Π΅Π»ΠΎΠ² ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ ΡΠ°Π·Π±Π°Π²Π»Π΅Π½ΠΈΠ΅ ΡΠΊΡΡΡΠ°ΠΊΡΠ° Π²ΠΎΠ΄ΠΎΠΉ Π΄ΠΎ ΡΡΡΡΠ°Π½Π΅Π½ΠΈΡ ΠΌΠ°ΡΡΠΈΡΠ½ΠΎΠ³ΠΎ ΡΡΡΠ΅ΠΊΡΠ°. ΠΠΈΠΆΠ½ΡΡ Π³ΡΠ°Π½ΠΈΡΠ° ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΠ΅ΠΌΡΡ
ΡΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΠΉ Ρ ΡΡΠ΅ΡΠΎΠΌ ΠΏΡΠΎΠ±ΠΎΠΏΠΎΠ΄Π³ΠΎΡΠΎΠ²ΠΊΠΈ ΠΈ ΡΠ°Π·Π±Π°Π²Π»Π΅Π½ΠΈΡ ΡΠΎΡΡΠ°Π²ΠΈΠ»Π° 1(500) ΠΌΠΊΠ³/ΠΊΠ³. Π‘ΡΠ΅ΠΏΠ΅Π½Ρ ΠΈΠ·Π²Π»Π΅ΡΠ΅Π½ΠΈΡ Π°Π½Π°Π»ΠΈΡΠΎΠ² ΠΈΠ· Π°Π½Π°Π»ΠΈΠ·ΠΈΡΡΠ΅ΠΌΡΡ
ΠΏΡΠΎΠ± ΠΊΠΎΠ»Π΅Π±Π»Π΅ΡΡΡ ΠΎΡ 78 Π΄ΠΎ 110 % Π² Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΠΈ ΠΎΡ ΠΌΠ°ΡΡΠΈΡΡ ΠΈ ΠΏΡΠΈΡΠΎΠ΄Ρ Π°Π½Π°Π»ΠΈΡΠ°. ΠΡΠ΅Π΄Π»ΠΎΠΆΠ΅Π½Π° ΡΡ
Π΅ΠΌΠ° ΠΈΠ΄Π΅Π½ΡΠΈΡΠΈΠΊΠ°ΡΠΈΠΈ ΠΈ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΡΠΎΠΊΡΠΈΠΊΠ°Π½ΡΠΎΠ² ΠΌΠ΅ΡΠΎΠ΄ΠΎΠΌ ΡΡΠ°Π½Π΄Π°ΡΡΠ½ΠΎΠΉ Π΄ΠΎΠ±Π°Π²ΠΊΠΈ. ΠΠΎΠΊΠ°Π·Π°Π½Ρ ΠΏΡΠ΅ΠΈΠΌΡΡΠ΅ΡΡΠ²Π° ΠΌΠ΅ΡΠΎΠ΄Π° ΡΡΠ°Π½Π΄Π°ΡΡΠ½ΠΎΠΉ Π΄ΠΎΠ±Π°Π²ΠΊΠΈ ΠΏΠ΅ΡΠ΅Π΄ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠΌ Π³ΡΠ°Π΄ΡΠΈΡΠΎΠ²ΠΎΡΠ½ΠΎΠ³ΠΎ Π³ΡΠ°ΡΠΈΠΊΠ° ΠΏΡΠΈ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠΈ ΡΠΎΠΊΡΠΈΠΊΠ°Π½ΡΠΎΠ² Π² ΡΠ΅Π°Π»ΡΠ½ΡΡ
ΠΏΡΠΎΠ±Π°Ρ
. ΠΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎΠ΅ ΡΡΠ°Π½Π΄Π°ΡΡΠ½ΠΎΠ΅ ΠΎΡΠΊΠ»ΠΎΠ½Π΅Π½ΠΈΠ΅ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠΎΠ² Π°Π½Π°Π»ΠΈΠ·Π° Π½Π΅ ΠΏΡΠ΅Π²ΡΡΠ°Π΅Ρ 0.11. ΠΡΠΎΠ΄ΠΎΠ»ΠΆΠΈΡΠ΅Π»ΡΠ½ΠΎΡΡΡ ΠΈΠ΄Π΅Π½ΡΠΈΡΠΈΠΊΠ°ΡΠΈΠΈ 40-60 ΠΌΠΈΠ½ ΠΈ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΠΎΠ±Π½Π°ΡΡΠΆΠ΅Π½Π½ΡΡ
ΡΠΎΠΊΡΠΈΠΊΠ°Π½ΡΠΎΠ² β 2-3 Ρ.ΠΠ»ΡΡΠ΅Π²ΡΠ΅ ΡΠ»ΠΎΠ²Π°: Π²ΡΡΠΎΠΊΠΎΡΡΡΠ΅ΠΊΡΠΈΠ²Π½Π°Ρ ΠΆΠΈΠ΄ΠΊΠΎΡΡΠ½Π°Ρ Ρ
ΡΠΎΠΌΠ°ΡΠΎΠ³ΡΠ°ΡΠΈΡ, ΡΠ°Π½Π΄Π΅ΠΌΠ½Π°Ρ ΠΊΠ²Π°Π΄ΡΡΠΏΠΎΠ»Ρ-Π²ΡΠ΅ΠΌΡΠΏΡΠΎΠ»Π΅ΡΠ½Π°Ρ ΠΌΠ°ΡΡ-ΡΠΏΠ΅ΠΊΡΡΠΎΠΌΠ΅ΡΡΠΈΡ, ΠΏΠΈΡΠ΅Π²ΡΠ΅ ΠΏΡΠΎΠ΄ΡΠΊΡΡ, ΠΊΠΎΡΠΌΠ°, ΠΏΠ΅ΡΡΠΈΡΠΈΠ΄Ρ, ΠΌΠΈΠΊΠΎΡΠΎΠΊΡΠΈΠ½Ρ, Π²Π΅ΡΠ΅ΡΠΈΠ½Π°ΡΠ½ΡΠ΅ ΠΏΡΠ΅ΠΏΠ°ΡΠ°ΡΡ, ΠΏΠΈΡΠ΅Π²ΡΠ΅ ΠΈ Π½Π΅ΠΏΠΈΡΠ΅Π²ΡΠ΅ ΠΊΡΠ°ΡΠΈΡΠ΅Π»ΠΈDOI:Β http://dx.doi.org/10.15826/analitika.2015.19.2.01
The identification and determination of toxicants in food products and raw food materials by HPLC / TOF high resolution mass spectrometry
ΠΡΠ΅Π΄Π»ΠΎΠΆΠ΅Π½Π° ΠΌΠ΅ΡΠΎΠ΄ΠΎΠ»ΠΎΠ³ΠΈΡ ΠΈΠ΄Π΅Π½ΡΠΈΡΠΈΠΊΠ°ΡΠΈΠΈ ΠΈ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΠΈΠ· ΠΎΠ΄Π½ΠΎΠΉ Π½Π°Π²Π΅ΡΠΊΠΈ 300 ΡΠΎΠΊΡΠΈΠΊΠ°Π½ΡΠΎΠ² ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ
ΠΊΠ»Π°ΡΡΠΎΠ² Π² ΠΏΠΈΡΠ΅Π²ΡΡ
ΠΏΡΠΎΠ΄ΡΠΊΡΠ°Ρ
ΠΈ ΠΏΡΠΎΠ΄ΠΎΠ²ΠΎΠ»ΡΡΡΠ²Π΅Π½Π½ΠΎΠΌ ΡΡΡΡΠ΅ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠΌ Π²ΡΠ΅ΠΌΡΠΏΡΠΎΠ»Π΅ΡΠ½ΠΎΠΉ ΠΌΠ°ΡΡ-ΡΠΏΠ΅ΠΊΡΡΠΎΠΌΠ΅ΡΡΠΈΠΈ Π²ΡΡΠΎΠΊΠΎΠ³ΠΎ ΡΠ°Π·ΡΠ΅ΡΠ΅Π½ΠΈΡ Π² ΡΠΎΡΠ΅ΡΠ°Π½ΠΈΠΈ Ρ Π²ΡΡΠΎΠΊΠΎΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΠΉ ΠΆΠΈΠ΄ΠΊΠΎΡΡΠ½ΠΎΠΉ Ρ
ΡΠΎΠΌΠ°ΡΠΎΠ³ΡΠ°ΡΠΈΠ΅ΠΉ ΠΈ ΠΏΡΠΎΡΡΠΎΠΉ, ΡΠΊΡΠΏΡΠ΅ΡΡΠ½ΠΎΠΉ ΠΏΡΠΎΠ±ΠΎΠΏΠΎΠ΄Π³ΠΎΡΠΎΠ²ΠΊΠΎΠΉ. ΠΠ½Π°Π»ΠΈΡΡ - ΠΏΠ΅ΡΡΠΈΡΠΈΠ΄Ρ, ΠΌΠΈΠΊΠΎΡΠΎΠΊΡΠΈΠ½Ρ, Π°Π½ΡΠΈΠ±ΠΈΠΎΡΠΈΠΊΠΈ, ΠΊΡΠ°ΡΠΈΡΠ΅Π»ΠΈ Π² ΠΏΠΈΡΠ΅Π²ΡΡ
ΠΏΡΠΎΠ΄ΡΠΊΡΠ°Ρ
ΠΈ ΠΊΠΎΡΠΌΠ°Ρ
. ΠΡΠ΅Π΄Π»ΠΎΠΆΠ΅Π½Ρ ΠΏΡΠΎΡΡΡΠ΅ Π²Π°ΡΠΈΠ°Π½ΡΡ ΠΏΡΠΎΠ±ΠΎΠΏΠΎΠ΄Π³ΠΎΡΠΎΠ²ΠΊΠΈ ΠΌΠΎΠ»ΠΎΠΊΠ°, ΠΌΡΡΠ°, ΠΆΠΈΡΠ°, ΡΠΈΡ, ΠΏΠ΅ΡΠ΅Π½ΠΈ, ΠΏΠΎΡΠ΅ΠΊ, ΠΊΠΎΡΠΌΠΎΠ² ΠΈ Π·Π΅ΡΠ½Π°. ΠΡΠΎΠ±ΠΎΠΏΠΎΠ΄Π³ΠΎΡΠΎΠ²ΠΊΠ° Π²ΠΊΠ»ΡΡΠ°Π΅Ρ ΡΠΊΡΡΡΠ°ΠΊΡΠΈΡ ΡΠΎΠΊΡΠΈΠΊΠ°Π½ΡΠΎΠ² Π°ΡΠ΅ΡΠΎΠ½ΠΈΡΡΠΈΠ»ΠΎΠΌ ΠΈ ΡΠ΄Π°Π»Π΅Π½ΠΈΠ΅ ΠΆΠΈΡΠΎΠ² ΡΠΊΡΡΡΠ°ΠΊΡΠΈΠ΅ΠΉ Π³Π΅ΠΊΡΠ°Π½ΠΎΠΌ. Π ΡΡΠ»ΠΎΠ²ΠΈΡΡ
ΡΠ»Π΅ΠΊΡΡΠΎΡΠ°ΡΠΏΡΠ»ΠΈΡΠ΅Π»ΡΠ½ΠΎΠΉ ΠΈΠΎΠ½ΠΈΠ·Π°ΡΠΈΠΈ Π±ΠΎΠ»ΡΡΠΈΠ½ΡΡΠ²ΠΎ Π°Π½Π°Π»ΠΈΡΠΎΠ² ΠΎΠ±ΡΠ°Π·ΡΡΡ ΠΏΡΠΎΡΠΎΠ½ΠΈΡΠΎΠ²Π°Π½Π½ΡΠ΅ ΠΈ Π΄Π΅ΠΏΡΠΎΡΠΎΠ½ΠΈΡΠΎΠ²Π°Π½Π½ΡΠ΅ ΡΠΎΡΠΌΡ, ΠΈ ΡΠ΅Π΄ΠΊΠΎ Π²ΡΡΡΠ΅ΡΠ°ΡΡΡΡ Π°Π΄Π΄ΡΠΊΡΡ Ρ Π°ΠΌΠΌΠΎΠ½ΠΈΠ΅ΠΌ, Π½Π°ΡΡΠΈΠ΅ΠΌ ΠΈ ΠΊΠ°Π»ΠΈΠ΅ΠΌ. ΠΠ΄Π΅Π½ΡΠΈΡΠΈΠΊΠ°ΡΠΈΡ Π°Π½Π°Π»ΠΈΡΠΎΠ² ΠΏΡΠΎΠ²Π΅Π΄Π΅Π½Π° Ρ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ ΠΏΡΠΎΠ³ΡΠ°ΠΌΠΌΡ Β«TargetAnalysis-1.3Β». ΠΠ΄Π΅Π½ΡΠΈΡΠΈΠΊΠ°ΡΠΈΠΎΠ½Π½ΡΠΌΠΈ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠ°ΠΌΠΈ ΡΠ»ΡΠΆΠΈΠ»ΠΈ Π²ΡΠ΅ΠΌΡ ΡΠ΄Π΅ΡΠΆΠΈΠ²Π°Π½ΠΈΡ, ΡΠΎΡΠ½ΠΎΡΡΡ ΠΈΠ·ΠΌΠ΅ΡΠ΅Π½Π½ΡΡ
ΠΌΠ°ΡΡ ΠΈΠΎΠ½ΠΎΠ² ΠΈ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΠΈΠ΅ ΠΈΠ·ΠΎΡΠΎΠΏΠ½ΠΎΠΌΡ ΡΠ°ΡΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ (mSigma). ΠΠΎΠΊΠ°Π·Π°Π½Ρ Π½ΠΈΠ·ΠΊΠΈΠ΅ ΠΏΡΠ΅Π΄Π΅Π»Ρ ΠΎΠ±Π½Π°ΡΡΠΆΠ΅Π½ΠΈΡ Π°Π½Π°Π»ΠΈΡΠΎΠ² (0.0005 - 50 Π½Π³/ΠΌΠ»). Π£ΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½ΠΎ, ΡΡΠΎ Ρ ΡΡΠ΅ΡΠΎΠΌ ΡΡΠΎΠ»Ρ Π½ΠΈΠ·ΠΊΠΈΡ
ΠΏΡΠ΅Π΄Π΅Π»ΠΎΠ² ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ ΡΠ°Π·Π±Π°Π²Π»Π΅Π½ΠΈΠ΅ ΡΠΊΡΡΡΠ°ΠΊΡΠ° Π²ΠΎΠ΄ΠΎΠΉ Π΄ΠΎ ΡΡΡΡΠ°Π½Π΅Π½ΠΈΡ ΠΌΠ°ΡΡΠΈΡΠ½ΠΎΠ³ΠΎ ΡΡΡΠ΅ΠΊΡΠ°. ΠΠΈΠΆΠ½ΡΡ Π³ΡΠ°Π½ΠΈΡΠ° ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΠ΅ΠΌΡΡ
ΡΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΠΉ Ρ ΡΡΠ΅ΡΠΎΠΌ ΠΏΡΠΎΠ±ΠΎΠΏΠΎΠ΄Π³ΠΎΡΠΎΠ²ΠΊΠΈ ΠΈ ΡΠ°Π·Π±Π°Π²Π»Π΅Π½ΠΈΡ ΡΠΎΡΡΠ°Π²ΠΈΠ»Π° 1(500) ΠΌΠΊΠ³/ΠΊΠ³. Π‘ΡΠ΅ΠΏΠ΅Π½Ρ ΠΈΠ·Π²Π»Π΅ΡΠ΅Π½ΠΈΡ Π°Π½Π°Π»ΠΈΡΠΎΠ² ΠΈΠ· Π°Π½Π°Π»ΠΈΠ·ΠΈΡΡΠ΅ΠΌΡΡ
ΠΏΡΠΎΠ± ΠΊΠΎΠ»Π΅Π±Π»Π΅ΡΡΡ ΠΎΡ 78 Π΄ΠΎ 110 % Π² Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΠΈ ΠΎΡ ΠΌΠ°ΡΡΠΈΡΡ ΠΈ ΠΏΡΠΈΡΠΎΠ΄Ρ Π°Π½Π°Π»ΠΈΡΠ°. ΠΡΠ΅Π΄Π»ΠΎΠΆΠ΅Π½Π° ΡΡ
Π΅ΠΌΠ° ΠΈΠ΄Π΅Π½ΡΠΈΡΠΈΠΊΠ°ΡΠΈΠΈ ΠΈ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΡΠΎΠΊΡΠΈΠΊΠ°Π½ΡΠΎΠ² ΠΌΠ΅ΡΠΎΠ΄ΠΎΠΌ ΡΡΠ°Π½Π΄Π°ΡΡΠ½ΠΎΠΉ Π΄ΠΎΠ±Π°Π²ΠΊΠΈ. ΠΠΎΠΊΠ°Π·Π°Π½Ρ ΠΏΡΠ΅ΠΈΠΌΡΡΠ΅ΡΡΠ²Π° ΠΌΠ΅ΡΠΎΠ΄Π° ΡΡΠ°Π½Π΄Π°ΡΡΠ½ΠΎΠΉ Π΄ΠΎΠ±Π°Π²ΠΊΠΈ ΠΏΠ΅ΡΠ΅Π΄ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠΌ Π³ΡΠ°Π΄ΡΠΈΡΠΎΠ²ΠΎΡΠ½ΠΎΠ³ΠΎ Π³ΡΠ°ΡΠΈΠΊΠ° ΠΏΡΠΈ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠΈ ΡΠΎΠΊΡΠΈΠΊΠ°Π½ΡΠΎΠ² Π² ΡΠ΅Π°Π»ΡΠ½ΡΡ
ΠΏΡΠΎΠ±Π°Ρ
. ΠΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎΠ΅ ΡΡΠ°Π½Π΄Π°ΡΡΠ½ΠΎΠ΅ ΠΎΡΠΊΠ»ΠΎΠ½Π΅Π½ΠΈΠ΅ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠΎΠ² Π°Π½Π°Π»ΠΈΠ·Π° Π½Π΅ ΠΏΡΠ΅Π²ΡΡΠ°Π΅Ρ 0.11. ΠΡΠΎΠ΄ΠΎΠ»ΠΆΠΈΡΠ΅Π»ΡΠ½ΠΎΡΡΡ ΠΈΠ΄Π΅Π½ΡΠΈΡΠΈΠΊΠ°ΡΠΈΠΈ 40-60 ΠΌΠΈΠ½ ΠΈ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΠΎΠ±Π½Π°ΡΡΠΆΠ΅Π½Π½ΡΡ
ΡΠΎΠΊΡΠΈΠΊΠ°Π½ΡΠΎΠ² - 2-3 Ρ.The methodology of identification and defining 300 toxicants of different classes in food products and food raw materials out of one sample have been proposed and realized by the TOF mass spectrometry of high resolution combined with high performance liquid chromatography and simple express sample preparation. Analytes included pesticides, mycotoxins and veterinary drugs. Simple sample preparation variations of milk, meat, fat, eggs, liver, kidney, feed and grain were suggested. Sample preparation involved the extraction with acetonitrile and removal of toxins fat by extraction with hexane. Under the electrospray ionization conditions most analytes develop protonated and deprotonated forms and rare adducts with ammonium, sodium and potassium. Identification of analytes was carried out using the Β«TargetAnalysis-1.3Β» program. Retention time, the accuracy of the masses of the ions and matching of the isotopic distribution (mSigma) were used as identification parameters. Low limits of detection of analytes were shown to be 0.0005-50 ng / ml. It was found that, given such low detection limits, the dilution of the extract with water to eliminate the matrix effect is possible. The lower limit of the defined content with the sample preparation and dilution amounted to 1 (500) mg / kg. The degree of extraction of analytes from the analyzed samples ranged from 78 to 110 % depending on the nature of the analyte and the matrix. A scheme for the identification and defining toxins by standard addition was proposed. The advantages of the standard addition method compared to the method of the calibration curve in the determination of toxicants in real samples were demonstrated. The relative standard deviation of the test results does not exceed 0.11. The identification period was 40-60 min, and the definition of identified toxicants was in the range of 2-3 hours
Spectrophotometric and enzymatic methods for biochemical analysis of blood sera from farm animals
Conventional and present-day principles of spectrophotometric and enzymatic determination of major biochemical values of animal blood serum (plasma) are described in the paper: total protein, albumin, urea, uric acid, creatinine, bilirubin (total and conjugated bilirubin), glucose, lactic acid, triglycerides, Cholesterine, phospholipids, calcium, magnesium, phosphorus, potassium, sodium, ferrum, chlorides, alkaline phosphatase, lactate dehydrogenase, creatine kinase, a-amylase, aspartate aminotransferase, alanine aminotransferase, Cholinesterase, Ξ³-glutamyltransferase and hemoglobin
Development and validation of fluoroquinolone detection method in chicken eggs using high-performance liquid chromatography
The method for the simultaneous detection of nine fluoroquinolone antibiotics (marbofloxacin, ofloxacin, pefloxacin, norfloxacin, ciprofloxacin, enrofloxacin, danofloxacin, sarafloxacin and difloxacin) in chicken eggs using high-performance liquid chromatography with fluorescence detection was developed. The detected range of fluoroquinolones is from 10 to 100 ΞΌg/kg in a 4g sample. Based on the validation studies the combined standard uncertainty and relative expanded uncertainty were calculated. The technique enables to detect antibiotic residues in their admissible levels equal to 100 ΞΌg/kg, in compliance with SanPiN 2.3.2.2804-10 and Common sanitary-epidemiological and hygienic requirements to the goods subject to sanitary and epidemiological surveillance (control)
Determination of adulterations in dairy products and vegetable oils based on their fatty acid compositions
Improved method for determination of fatty acid compositions of dairy and plant products that allows detection of adulterations in vegetable oils, milk and dairy products is described in the paper
Capabilities of capillary electrophoresis for analysis of ready-to-use pharmaceutical products with an antibacterial effect
The capability to monitor quality of ready-to-use pharmaceuticals using capillary electrophoresis methods is evaluated in the paper. Optimal conditions for separation and determination of different classes of such antibacterial agents as penicillins, fluoroquinolones, nitrofurans, sulfanilamides, metronidazole and chloramphenicol are chosen. The range of content of active constituents is 1-2500 mg/g for solid samples and 0,001-0,50% for liquid preparations