2,591 research outputs found

    Was the Universe Reionized by Massive Population-III Stars?

    Full text link
    The WMAP satellite has measured a large optical depth to electron scattering after cosmological recombination of 0.17+-0.04, implying significant reionization of the primordial gas only ~200 million years after the big bang. However, the most recent overlap of intergalactic HII regions must have occured at z<9 based on the Lyman-alpha forest constraint on the thermal history of the intergalactic medium. Here we argue that a first generation of metal-free stars with a heavy (rather than Salpeter) mass function is therefore required to account for much of the inferred optical depth. This conclusion holds if feedback regulates star formation in early dwarf galaxies as observed in present-day dwarfs.Comment: 4 pages, 1 figure, replaced to match version accepted by ApJ Letter

    Large scale distribution of total mass versus luminous matter from Baryon Acoustic Oscillations: First search in the SDSS-III BOSS Data Release 10

    Get PDF
    Baryon Acoustic Oscillations (BAOs) in the early Universe are predicted to leave an as yet undetected signature on the relative clustering of total mass versus luminous matter. A detection of this effect would provide an important confirmation of the standard cosmological paradigm and constrain alternatives to dark matter as well as non-standard fluctuations such as Compensated Isocurvature Perturbations (CIPs). We conduct the first observational search for this effect, by comparing the number-weighted and luminosity-weighted correlation functions, using the SDSS-III BOSS Data Release 10 CMASS sample. When including CIPs in our model, we formally obtain evidence at 3.2σ3.2\sigma of the relative clustering signature and a limit that matches the existing upper limits on the amplitude of CIPs. However, various tests suggest that these results are not yet robust, perhaps due to systematic biases in the data. The method developed in this Letter, used with more accurate future data such as that from DESI, is likely to confirm or disprove our preliminary evidence.Comment: 6 pages, 2 figures, accepted for publication in PR

    Measuring the Size of Quasar Broad-Line Clouds Through Time Delay Light-Curve Anomalies of Gravitational Lenses

    Full text link
    Intensive monitoring campaigns have recently attempted to measure the time delays between multiple images of gravitational lenses. Some of the resulting light-curves show puzzling low-level, rapid variability which is unique to individual images, superimposed on top of (and concurrent with) longer time-scale intrinsic quasar variations which repeat in all images. We demonstrate that both the amplitude and variability time-scale of the rapid light-curve anomalies, as well as the correlation observed between intrinsic and microlensed variability, are naturally explained by stellar microlensing of a smooth accretion disk which is occulted by optically-thick broad-line clouds. The rapid time-scale is caused by the high velocities of the clouds (~5x10^3 km/s), and the low amplitude results from the large number of clouds covering the magnified or demagnified parts of the disk. The observed amplitudes of variations in specific lenses implies that the number of broad-line clouds that cover ~10% of the quasar sky is ~10^5 per 4 pi steradian. This is comparable to the expected number of broad line clouds in models where the clouds originate from bloated stars.Comment: 19 pages, 9 figures. Submitted to Ap

    Unintentional miRNA Ablation Is a Risk Factor in Gene Knockout Studies: A Short Report

    Get PDF
    One of the most powerful techniques for studying the function of a gene is to disrupt the expression of that gene using genetic engineering strategies such as targeted recombination or viral integration of gene trap cassettes. The tremendous utility of these tools was recognized this year with the awarding of the Nobel Prize in Physiology or Medicine to Capecchi, Evans, and Smithies for their pioneering work in targeted recombination mutagenesis in mammals. Another noteworthy discovery made nearly a decade ago was the identification of a novel class of non-coding genes called microRNAs. MicroRNAs are among the largest known classes of regulatory elements with more than 1000 predicted to exist in the mouse genome. Over 50% of known microRNAs are located within introns of coding genes. Given that currently about half of the genes in mouse have been knocked out, we investigated the possibility that intronic microRNAs may have been coincidentally deleted or disrupted in some of these mouse models. We searched published murine knockout studies and gene trap embryonic stem cell line databases for cases where a microRNA was located within or near the manipulated genomic loci, finding almost 200 cases where microRNA expression may have been disrupted along with another gene. Our results draw attention to the need for careful planning in future knockout studies to minimize the unintentional disruption of microRNAs. These data also raise the possibility that many knockout studies may need to be reexamined to determine if loss of a microRNA contributes to the phenotypic consequences attributed to loss of a protein-encoding gene

    The Photo-Evaporation of Dwarf Galaxies During Reionization

    Get PDF
    During the period of reionization the Universe was filled with a cosmological background of ionizing radiation. By that time a significant fraction of the cosmic gas had already been incorporated into collapsed galactic halos with virial temperatures below about 10000 K that were unable to cool efficiently. We show that photoionization of this gas by the fresh cosmic UV background boiled the gas out of the gravitational potential wells of its host halos. We calculate the photoionization heating of gas inside spherically symmetric dark matter halos, and assume that gas which is heated above its virial temperature is expelled. In popular Cold Dark Matter models, the Press-Schechter halo abundance implies that about 50-90% of the collapsed gas was evaporated at reionization. The gas originated from halos below a threshold circular velocity of 10-15 km/s. The resulting outflows from the dwarf galaxy population at redshifts 5-10 affected the metallicity, thermal and hydrodynamic state of the surrounding intergalactic medium. Our results suggest that stellar systems with a velocity dispersion below about 10 km/s, such as globular clusters or the dwarf spheroidal galaxies of the Local Group, did not form directly through cosmological collapse at high redshifts.Comment: 29 pages, 7 PostScript figures, accepted for ApJ. Final version, revised due to referee comments. Figures 6 & 7 have been corrected for a small numerical erro

    Is a Classical Language Adequate in Assessing the Detectability of the Redshifted 21cm Signal from the Early Universe?

    Full text link
    The classical radiometer equation is commonly used to calculate the detectability of the 21cm emission by diffuse cosmic hydrogen at high redshifts. However, the classical description is only valid in the regime where the occupation number of the photons in phase space is much larger than unity and they collectively behave as a classical electromagnetic field. At redshifts z<20, the spin temperature of the intergalactic gas is dictated by the radiation from galaxies and the brightness temperature of the emitting gas is in the range of mK, independently from the existence of the cosmic microwave background. In regions where the observed brightness temperature of the 21cm signal is smaller than the observed photon energy, of 68/(1+z) mK, the occupation number of the signal photons is smaller than unity. Neverethless, the radiometer equation can still be used in this regime because the weak signal is accompanied by a flood of foreground photons with a high occupation number (involving the synchrotron Galactic emission and the cosmic microwave background). As the signal photons are not individually distinguishable, the combined signal+foreground population of photons has a high occupation number, thus justifying the use of the radiometer equation.Comment: 4 pages, Accepted for publication in JCA

    Measuring the Small-Scale Power Spectrum of Cosmic Density Fluctuations Through 21 cm Tomography Prior to the Epoch of Structure Formation

    Full text link
    The thermal evolution of the cosmic gas decoupled from that of the cosmic microwave background (CMB) at a redshift z~200. Afterwards and before the first stars had formed, the cosmic neutral hydrogen absorbed the CMB flux at its resonant 21cm spin-flip transition. We calculate the evolution of the spin temperature for this transition and the resulting anisotropies that are imprinted on the CMB sky due to linear density fluctuations during this epoch. These anisotropies at an observed wavelength of 10.56[(1+z)/50] meters, contain an amount of information that is orders of magnitude larger than any other cosmological probe. Their detection, although challenging, could tightly constrain any possible running of the spectral index from inflation (as suggested by WMAP), small deviations from Gaussianity, or any significant contribution from neutrinos or warm dark matter to the cosmic mass budget.Comment: 4 pages, 3 figures, accepted for publication in Physical Review Letter

    Probing Red Giant Atmospheres with Gravitational Microlensing

    Get PDF
    Gravitational microlensing provides a new technique for studying the surfaces of distant stars. Microlensing events are detected in real time and can be followed up with precision photometry and spectroscopy. This method is particularly adequate for studying red giants in the Galactic bulge. Recently we developed an efficient method capable of computing the lensing effect for thousands of frequencies in a high-resolution stellar spectrum. Here we demonstrate the effects of microlensing on synthesized optical spectra of red giant model atmospheres. We show that different properties of the stellar surface can be recovered from time-dependent photometry and spectroscopy of a point-mass microlensing event with a small impact parameter. In this study we concentrate on center-to-limb variation of spectral features. Measuring such variations can reveal the depth structure of the atmosphere of the source star.Comment: 23 pages with 11 Postscript figures, submitted to ApJ; Section 2 expanded, references added, text revise

    Dwarf Galaxy Formation Was Suppressed By Cosmic Reionization

    Full text link
    A large number of faint galaxies, born less than a billion years after the big bang, have recently been discovered. The fluctuations in the distribution of these galaxies contributed to a scatter in the ionization fraction of cosmic hydrogen on scales of tens of Mpc, as observed along the lines of sight to the earliest known quasars. Theoretical simulations predict that the formation of dwarf galaxies should have been suppressed after cosmic hydrogen was reionized, leading to a drop in the cosmic star formation rate. Here we present evidence for this suppression. We show that the post-reionization galaxies which produced most of the ionizing radiation at a redshift z~5.5, must have had a mass in excess of ~10^{10.6+/-0.4} solar masses or else the aforementioned scatter would have been smaller than observed. This limiting mass is two orders of magnitude larger than the galaxy mass that is thought to have dominated the reionization of cosmic hydrogen (~10^8 solar masses). We predict that future surveys with space-based infrared telescopes will detect a population of smaller galaxies that reionized the Universe at an earlier time, prior to the epoch of dwarf galaxy suppression.Comment: 19 pages, 3 figures. Accepted for publication in Nature; press embargo until publishe
    • 

    corecore