1,971 research outputs found

    The ATLAS liquid argon hadronic end-cap calorimeter: construction and selected beam test results

    Full text link
    ATLAS has chosen for its Hadronic End-Cap Calorimeter (HEC) the copper-liquid argon sampling technique with flat plate geometry and GaAs pre-amplifiers in the argon. The contruction of the calorimeter is now approaching completion. Results of production quality checks are reported and their anticipated impact on calorimeter performance discussed. Selected results, such as linearity, electron and pion energy resolution, uniformity of energy response, obtained in beam tests both of the Hadronic End-Cap Calorimeter by itself, and in the ATLAS configuration where the HEC is in combination with the Electromagnetic End-Cap Calorimeter (EMEC) are described.Comment: 4 pages, 2 figures,IPRD04 conferenc

    Finite-size scaling in thin Fe/Ir(100) layers

    Full text link
    The critical temperature of thin Fe layers on Ir(100) is measured through M\"o{\ss}bauer spectroscopy as a function of the layer thickness. From a phenomenological finite-size scaling analysis, we find an effective shift exponent lambda = 3.15 +/- 0.15, which is twice as large as the value expected from the conventional finite-size scaling prediction lambda=1/nu, where nu is the correlation length critical exponent. Taking corrections to finite-size scaling into account, we derive the effective shift exponent lambda=(1+2\Delta_1)/nu, where Delta_1 describes the leading corrections to scaling. For the 3D Heisenberg universality class, this leads to lambda = 3.0 +/- 0.1, in agreement with the experimental data. Earlier data by Ambrose and Chien on the effective shift exponent in CoO films are also explained.Comment: Latex, 4 pages, with 2 figures, to appear in Phys. Rev. Lett

    Bayesian Parameter Estimation for Latent Markov Random Fields and Social Networks

    Get PDF
    Undirected graphical models are widely used in statistics, physics and machine vision. However Bayesian parameter estimation for undirected models is extremely challenging, since evaluation of the posterior typically involves the calculation of an intractable normalising constant. This problem has received much attention, but very little of this has focussed on the important practical case where the data consists of noisy or incomplete observations of the underlying hidden structure. This paper specifically addresses this problem, comparing two alternative methodologies. In the first of these approaches particle Markov chain Monte Carlo (Andrieu et al., 2010) is used to efficiently explore the parameter space, combined with the exchange algorithm (Murray et al., 2006) for avoiding the calculation of the intractable normalising constant (a proof showing that this combination targets the correct distribution in found in a supplementary appendix online). This approach is compared with approximate Bayesian computation (Pritchard et al., 1999). Applications to estimating the parameters of Ising models and exponential random graphs from noisy data are presented. Each algorithm used in the paper targets an approximation to the true posterior due to the use of MCMC to simulate from the latent graphical model, in lieu of being able to do this exactly in general. The supplementary appendix also describes the nature of the resulting approximation.Comment: 26 pages, 2 figures, accepted in Journal of Computational and Graphical Statistics (http://www.amstat.org/publications/jcgs.cfm

    Hardware calibrated learning to compensate heterogeneity in analog RRAM-based Spiking Neural Networks

    Full text link
    Spiking Neural Networks (SNNs) can unleash the full power of analog Resistive Random Access Memories (RRAMs) based circuits for low power signal processing. Their inherent computational sparsity naturally results in energy efficiency benefits. The main challenge implementing robust SNNs is the intrinsic variability (heterogeneity) of both analog CMOS circuits and RRAM technology. In this work, we assessed the performance and variability of RRAM-based neuromorphic circuits that were designed and fabricated using a 130 nm technology node. Based on these results, we propose a Neuromorphic Hardware Calibrated (NHC) SNN, where the learning circuits are calibrated on the measured data. We show that by taking into account the measured heterogeneity characteristics in the off-chip learning phase, the NHC SNN self-corrects its hardware non-idealities and learns to solve benchmark tasks with high accuracy. This work demonstrates how to cope with the heterogeneity of neurons and synapses for increasing classification accuracy in temporal tasks

    R-Parity Violation at HERA

    Full text link
    We summarize the signals at HERA in supersymmetric models with explicitly broken R-parity. As the most promising case, we consider in detail the resonant production of single squarks through an operator L1QiDˉjL_1Q_i{ \bar D}_j, a production process analogous to that for leptoquarks. However, the dominant decay of the squark to a quark and a photino leads to a very different experimental signature. We examine in particular the case where the photino decays to a positron and two quarks. Using a detailed Monte-Carlo procedure we obtain a discovery limit in the squark mass---Yukawa coupling plane. HERA can discover a squark for a mass as large as 270 \gev and for an R-parity violating Yukawa coupling as small as 5.8×1035.8 \times 10^{-3}.Comment: 23 pages, 11 figures upon request, Oxford Preprint, OUNP-92-1

    A population Monte Carlo scheme with transformed weights and its application to stochastic kinetic models

    Get PDF
    This paper addresses the problem of Monte Carlo approximation of posterior probability distributions. In particular, we have considered a recently proposed technique known as population Monte Carlo (PMC), which is based on an iterative importance sampling approach. An important drawback of this methodology is the degeneracy of the importance weights when the dimension of either the observations or the variables of interest is high. To alleviate this difficulty, we propose a novel method that performs a nonlinear transformation on the importance weights. This operation reduces the weight variation, hence it avoids their degeneracy and increases the efficiency of the importance sampling scheme, specially when drawing from a proposal functions which are poorly adapted to the true posterior. For the sake of illustration, we have applied the proposed algorithm to the estimation of the parameters of a Gaussian mixture model. This is a very simple problem that enables us to clearly show and discuss the main features of the proposed technique. As a practical application, we have also considered the popular (and challenging) problem of estimating the rate parameters of stochastic kinetic models (SKM). SKMs are highly multivariate systems that model molecular interactions in biological and chemical problems. We introduce a particularization of the proposed algorithm to SKMs and present numerical results.Comment: 35 pages, 8 figure
    corecore