54 research outputs found

    Origin of ferromagnetism in (Zn,Co)O from magnetization and spin-dependent magnetoresistance

    Full text link
    In order to elucidate the nature of ferromagnetic signatures observed in (Zn,Co)O we have examined experimentally and theoretically magnetic properties and spin-dependent quantum localization effects that control low-temperature magnetoresistance. Our findings, together with a through structural characterization, substantiate the model assigning spontaneous magnetization of (Zn,Co)O to uncompensated spins at the surface of antiferromagnetic nanocrystal of Co-rich wurtzite (Zn,Co)O. The model explains a large anisotropy observed in both magnetization and magnetoresistance in terms of spin hamiltonian of Co ions in the crystal field of the wurtzite lattice.Comment: 6 pages, 6 figure

    Spin-related magnetoresistance of n-type ZnO:Al and Zn_{1-x}Mn_{x}O:Al thin films

    Full text link
    Effects of spin-orbit coupling and s-d exchange interaction are probed by magnetoresistance measurements carried out down to 50 mK on ZnO and Zn_{1-x}Mn_{x}O with x = 3 and 7%. The films were obtained by laser ablation and doped with Al to electron concentration ~10^{20} cm^{-3}. A quantitative description of the data for ZnO:Al in terms of weak-localization theory makes it possible to determine the coupling constant \lambda_{so} = (4.4 +- 0.4)*10^{-11} eVcm of the kp hamiltonian for the wurzite structure, H_{so} = \lambda_{so}*c(s x k). A complex and large magnetoresistance of Zn_{1-x}Mn_{x}O:Al is interpreted in terms of the influence of the s-d spin-splitting and magnetic polaron formation on the disorder-modified electron-electron interactions. It is suggested that the proposed model explains the origin of magnetoresistance observed recently in many magnetic oxide systems.Comment: 4 pages, 4 figure

    Novel Quaternary Dilute Magnetic Semiconductor (Ga,Mn)(Bi,As): Magnetic and Magneto-Transport Investigations

    Full text link
    Magnetic and magneto-transport properties of thin layers of the (Ga,Mn)(Bi,As) quaternary dilute magnetic semiconductor grown by the low-temperature molecular-beam epitaxy technique on GaAs substrates have been investigated. Ferromagnetic Curie temperature and magneto-crystalline anisotropy of the layers have been examined by using magneto-optical Kerr effect magnetometry and low-temperature magneto-transport measurements. Postgrowth annealing treatment has been shown to enhance the hole concentration and Curie temperature in the layers. Significant increase in the magnitude of magnetotransport effects caused by incorporation of a small amount of Bi into the (Ga,Mn)As layers revealed in the planar Hall effect (PHE) measurements, is interpreted as a result of enhanced spin-orbit coupling in the (Ga,Mn)(Bi,As) layers. Two-state behaviour of the planar Hall resistance at zero magnetic field provides its usefulness for applications in nonvolatile memory devices.Comment: 10 pages, 3 figures, to be published in the Proceedings of ICSM-2016 conferenc

    Ising Quantum Hall Ferromagnet in Magnetically Doped Quantum Wells

    Full text link
    We report on the observation of the Ising quantum Hall ferromagnet with Curie temperature TCT_C as high as 2 K in a modulation-doped (Cd,Mn)Te heterostructure. In this system field-induced crossing of Landau levels occurs due to the giant spin-splitting effect. Magnetoresistance data, collected over a wide range of temperatures, magnetic fields, tilt angles, and electron densities, are discussed taking into account both Coulomb electron-electron interactions and s-d coupling to Mn spin fluctuations. The critical behavior of the resistance ``spikes'' at TTCT \to T_C corroborates theoretical suggestions that the ferromagnet is destroyed by domain excitations.Comment: revised, 4 pages, 4 figure

    Carrier-induced ferromagnetism in p-Zn1-xMnxTe

    Full text link
    We present a systematic study of the ferromagnetic transition induced by the holes in nitrogen doped Zn1-xMnxTe epitaxial layers, with particular emphasis on the values of the Curie-Weiss temperature as a function of the carrier and spin concentrations. The data are obtained from thorough analyses of the results of magnetization, magnetoresistance and spin-dependent Hall effect measurements. The experimental findings compare favorably, without adjustable parameters, with the prediction of the Rudermann-Kittel-Kasuya-Yosida (RKKY) model or its continuous-medium limit, that is, the Zener model, provided that the presence of the competing antiferromagnetic spin-spin superexchange interaction is taken into account, and the complex structure of the valence band is properly incorporated into the calculation of the spin susceptibility of the hole liquid. In general terms, the findings demonstrate how the interplay between the ferromagnetic RKKY interaction, carrier localization, and intrinsic antiferromagnetic superexchange affects the ordering temperature and the saturation value of magnetization in magnetically and electrostatically disordered systems.Comment: 14 pages, 10 figure

    Quantum Hall states under conditions of vanishing Zeeman energy

    Full text link
    We report on magneto-transport measurements of a two-dimensional electron gas confined in a Cd0.997_{0.997}Mn0.003_{0.003}Te quantum well structure under conditions of vanishing Zeeman energy. The electron Zeeman energy has been tuned via the sds-d exchange interaction in order to probe different quantum Hall states associated with metallic and insulating phases. We have observed that reducing Zeeman energy to zero does not necessary imply the disappearing of quantum Hall states, i.e. a closing of the spin gap. The spin gap value under vanishing Zeeman energy conditions is shown to be dependent on the filling factor. Numerical simulations support a qualitative description of the experimental data presented in terms of a crossing or an avoided-crossing of spin split Landau levels with same orbital quantum number NN

    Ferromagnetism and Electronic Structure of (Ga,Mn)As:Bi and (Ga,Mn)As Epitaxial Layers

    Get PDF
    The photoreflectance (PR) spectroscopy was applied to study the band-structure in GaAs:Bi, (Ga,Mn)As and (Ga,Mn)As:Bi layers with the 4% of Mn and 1 % of Bi content and, as a reference, undoped GaAs layer. All films were grown by low temperature (LT) MBE on semi-insulating (001) GaAs substrates. Photoreflec-tance studies were supported by Raman spectroscopy and high resolution X-ray diffractometry (XRD) measurements. Magnetic properties of the films were characterized with a superconducting quantum in-terference device (SQUID) magnetometer. Our findings were interpreted in terms of the model, which as-sumes that the mobile holes residing in the valence band of GaAs and the Fermi level position determined by the concentration of valence-band holes. When you are citing the document, use the following link http://essuir.sumdu.edu.ua/handle/123456789/3533

    Photoreflectance Study of the Fundamental Optical Properties of (Ga,Mn)As Epitaxial Films

    Full text link
    Fundamental optical properties of thin films of (Ga,Mn)As diluted ferromagnetic semiconductor with a low (1%) and high (6%) Mn content and of a reference GaAs film, grown by low-temperature molecular-beam epitaxy, have been investigated by photoreflectance (PR) spectroscopy. In addition, the films were subjected to complementary characterization by means of superconducting quantum interference device (SQUID) magnetometry, Raman spectroscopy, and high resolution X-ray diffractometry. Thorough full-line-shape analysis of the PR spectra, which enabled determination of the E0 electronic transition in (Ga,Mn)As, revealed significant differences between the energy band structures in vicinity of the {\Gamma} point of the Brillouin zone for the two (Ga,Mn)As films. In view of the obtained experimental results the evolution of the valence band structure in (Ga,Mn)As with increasing Mn content is discussed, pointing to a merging the Mn-related impurity band with the host GaAs valence band for high Mn content.Comment: 21 pages, 6 figure
    corecore