1,891 research outputs found
Gaussian capacity of the quantum bosonic channel with additive correlated Gaussian noise
We present an algorithm for calculation of the Gaussian classical capacity of
a quantum bosonic memory channel with additive Gaussian noise. The algorithm,
restricted to Gaussian input states, is applicable to all channels with noise
correlations obeying certain conditions and works in the full input energy
domain, beyond previous treatments of this problem. As an illustration, we
study the optimal input states and capacity of a quantum memory channel with
Gauss-Markov noise [J. Sch\"afer, Phys. Rev. A 80, 062313 (2009)]. We evaluate
the enhancement of the transmission rate when using these optimal entangled
input states by comparison with a product coherent-state encoding and find out
that such a simple coherent-state encoding achieves not less than 90% of the
capacity.Comment: 12+6 pages, 9 figures. Errors corrected, figures were made clearer,
appendix improved and extende
South Asian summer monsoon projections constrained by the Intedacadal Pacific Oscillation
A reliable projection of future South Asian summer monsoon (SASM) benefits a large population in Asia. Using a 100-member ensemble of simulations by the Max Planck Institute Earth System Model (MPI-ESM) and a 50-member ensemble of simulations by the Canadian Earth System Model (CanESM2), we find that internal variability can overshadow the forced SASM rainfall trend, leading to large projection uncertainties for the next 15 to 30 years. We further identify that the Interdecadal Pacific Oscillation (IPO) is, in part, responsible for the uncertainties. Removing the IPO-related rainfall variations reduces the uncertainties in the near-term projection of the SASM rainfall by 13 to 15% and 26 to 30% in the MPI-ESM and CanESM2 ensembles, respectively. Our results demonstrate that the uncertainties in near-term projections of the SASM rainfall can be reduced by improving prediction of near-future IPO and other internal modes of climate variabilit
A Robot Model of OC-Spectrum Disorders : Design Framework, Implementation and First Experiments
© 2019 Massachusetts Institute of TechnologyComputational psychiatry is increasingly establishing itself as valuable discipline for understanding human mental disorders. However, robot models and their potential for investigating embodied and contextual aspects of mental health have been, to date, largely unexplored. In this paper, we present an initial robot model of obsessive-compulsive (OC) spectrum disorders based on an embodied motivation-based control architecture for decision making in autonomous robots. The OC family of conditions is chiefly characterized by obsessions (recurrent, invasive thoughts) and/or compulsions (an urge to carry out certain repetitive or ritualized behaviors). The design of our robot model follows and illustrates a general design framework that we have proposed to ground research in robot models of mental disorders, and to link it with existing methodologies in psychiatry, and notably in the design of animal models. To test and validate our model, we present and discuss initial experiments, results and quantitative and qualitative analysis regarding the compulsive and obsessive elements of OC-spectrum disorders. While this initial stage of development only models basic elements of such disorders, our results already shed light on aspects of the underlying theoretical model that are not obvious simply from consideration of the model.Peer reviewe
A Multicenter Examination and Strategic Revisions of the Yale Global Tic Severity Scale
Objective To examine the internal consistency and distribution of the Yale Global Tic Severity Scale (YGTSS) scores to inform modification of the measure. Methods This cross-sectional study included 617 participants with a tic disorder (516 children and 101 adults), who completed an age-appropriate diagnostic interview and the YGTSS to evaluate tic symptom severity. The distributions of scores on YGTSS dimensions were evaluated for normality and skewness. For dimensions that were skewed across motor and phonic tics, a modified Delphi consensus process was used to revise selected anchor points. Results Children and adults had similar clinical characteristics, including tic symptom severity. All participants were examined together. Strong internal consistency was identified for the YGTSS Motor Tic score (α = 0.80), YGTSS Phonic Tic score (α = 0.87), and YGTSS Total Tic score (α = 0.82). The YGTSS Total Tic and Impairment scores exhibited relatively normal distributions. Several subscales and individual item scales departed from a normal distribution. Higher scores were more often used on the Motor Tic Number, Frequency, and Intensity dimensions and the Phonic Tic Frequency dimension. By contrast, lower scores were more often used on Motor Tic Complexity and Interference, and Phonic Tic Number, Intensity, Complexity, and Interference. Conclusions The YGTSS exhibits good internal consistency across children and adults. The parallel findings across Motor and Phonic Frequency, Complexity, and Interference dimensions prompted minor revisions to the anchor point description to promote use of the full range of scores in each dimension. Specific minor revisions to the YGTSS Phonic Tic Symptom Checklist were also proposed
Detectable Anthropogenic Shift toward Heavy Precipitation over Eastern China
Changes in precipitation characteristics directly affect society through their impacts on drought and floods, hydro-dams, and urban drainage systems. Global warming increases the water holding capacity of the atmosphere and thus the risk of heavy precipitation. Here, daily precipitation records from over 700 Chinese stations from 1956 to 2005 are analyzed. The results show a significant shift from light to heavy precipitation over eastern China. An optimal fingerprinting analysis of simulations from 11 climate models driven by different combinations of historical anthropogenic (greenhouse gases, aerosols, land use, and ozone) and natural (volcanic and solar) forcings indicates that anthropogenic forcing on climate, including increases in greenhouse gases (GHGs), has had a detectable contribution to the observed shift toward heavy precipitation. Some evidence is found that anthropogenic aerosols (AAs) partially offset the effect of the GHG forcing, resulting in a weaker shift toward heavy precipitation in simulations that include the AA forcing than in simulations with only the GHG forcing. In addition to the thermodynamic mechanism, strengthened water vapor transport from the adjacent oceans and by midlatitude westerlies, resulting mainly from GHG-induced warming, also favors heavy precipitation over eastern China. Further GHG-induced warming is predicted to lead to an increasing shift toward heavy precipitation, leading to increased urban flooding and posing a significant challenge for mega-cities in China in the coming decades. Future reductions in AA emissions resulting from air pollution controls could exacerbate this tendency toward heavier precipitation
Human viruses:discovery and emergence
There are 219 virus species that are known to be able to infect humans. The first of these to be discovered was yellow fever virus in 1901, and three to four new species are still being found every year. Extrapolation of the discovery curve suggests that there is still a substantial pool of undiscovered human virus species, although an apparent slow-down in the rate of discovery of species from different families may indicate bounds to the potential range of diversity. More than two-thirds of human viruses can also infect non-human hosts, mainly mammals, and sometimes birds. Many specialist human viruses also have mammalian or avian origins. Indeed, a substantial proportion of mammalian viruses may be capable of crossing the species barrier into humans, although only around half of these are capable of being transmitted by humans and around half again of transmitting well enough to cause major outbreaks. A few possible predictors of species jumps can be identified, including the use of phylogenetically conserved cell receptors. It seems almost inevitable that new human viruses will continue to emerge, mainly from other mammals and birds, for the foreseeable future. For this reason, an effective global surveillance system for novel viruses is needed
Atmosfera controlada associada ao 1-metilciclopropeno na preservação da qualidade de kiwi ?tewi?.
O objetivo deste trabalho foi determinar os efeitos de diferentes tecnologias de armazenamento na qualidade físico-química de kiwis da cultivar Tewi. Após a colheita, parte dos frutos foi submetida ao tratamento com 1-metilciclopropeno (1-MCP) e, posteriormente, frutos tratados e não tratados foram submetidos a diferentes condições de armazenamento, conforme segue: armazenamento em temperatura ambiente (20 °C ± 0,5 °C) durante 12 dias; armazenamento refrigerado (0°C ± 0,5°C) com ou sem controle da atmosfera (3 KPa O2 e 5 KPa CO2), e com ou sem absorção de etileno durante dois e quatro meses. Foram avaliadas a firmeza de polpa, o teor de sólidos solúveis e a acidez titulável. Verificou-se que, independentemente da tecnologia de conservação, houve uma diminuição na firmeza de polpa já aos dois meses de armazenamento, sendo a condição atmosfera controlada associada ao uso do 1-MCP a mais eficaz na retenção desse atributo. Frutos mantidos em temperatura ambiente apresentaram relação direta entre a redução da firmeza de polpa e o aumento do índice de sólidos solúveis; no entanto, após o armazenamento, essa relação nem sempre ocorreu. A maior acidez titulável foi verificada em frutos que receberam 1-MCP. Kiwis ‘Tewi’ apresentam bom potencial de conservação, podendo permanecer armazenados por até quatro meses em atmosfera controlada associada ao controle do etileno pelo uso de 1-MCP ou por absorção do etileno. Palavras-chave: Actinidia deliciosa; Qualidade físico-química; Pós-colheita; Firmeza de polpa. The aim of this study was to evaluate the effect of different storage technologies on the physical and chemical qualities of ‘Tewi’ kiwifruits. After harvesting, part of the fruits was treated with 1-methylcyclopropene (1-MCP), and then both the treated and non-treated fruits were stored under different conditions, as follows: storage at room temperature (20 °C ± 0.5 °C) for twelve days; refrigerated storage (0°C ± 0.5°C), with or without a controlled atmosphere (3% O2 and 5% CO2); and storage with or without ethylene adsorption for two and four months. The firmness of the flesh, soluble solids content and titratable acidity were evaluated during storage. It was noted that regardless of storage technology there was a reduction in firmness after two months. The controlled atmosphere conditions with 1-MCP were the most effective in retaining firmness. Fruits kept at room temperature showed a direct relationship between the reduction in flesh firmness and the increase in soluble solids content, although this relationship was not always observed after storage. The highest titratable acidity was observed in the fruits treated with 1-MCP. ‘Tewi’ kiwis showed good conservation potential, and could be stored for up to four months in a controlled atmosphere with ethylene management using 1-MCP or ethylene absorption. Keywords: Actinidia deliciosa; Physicochemical quality; Postharvest; Flesh firmness.Epu
Impact of antibacterials on subsequent resistance and clinical outcomes in adult patients with viral pneumonia: An opportunity for stewardship
INTRODUCTION: Respiratory viruses are increasingly recognized as significant etiologies of pneumonia among hospitalized patients. Advanced technologies using multiplex molecular assays and polymerase-chain reaction increase the ability to identify viral pathogens and may ultimately impact antibacterial use. METHOD: This was a single-center retrospective cohort study to evaluate the impact of antibacterials in viral pneumonia on clinical outcomes and subsequent multidrug-resistant organism (MDRO) infections/colonization. Patients admitted from March 2013 to November 2014 with positive respiratory viral panels (RVP) and radiographic findings of pneumonia were included. Patients transferred from an outside hospital or not still hospitalized 72 hours after the RVP report date were excluded. Patients were categorized based on exposure to systemic antibacterials: less than 3 days representing short-course therapy and 3 to 10 days being long-course therapy. RESULTS: A total of 174 patients (long-course, n = 67; short-course, n = 28; mixed bacterial-viral infection, n = 79) were included with most being immunocompromised (56.3 %) with active malignancy the primary etiology (69.4 %). Rhinovirus/Enterovirus (23 %), Influenza (19 %), and Parainfluenza (15.5 %) were the viruses most commonly identified. A total of 13 different systemic antibacterials were used as empiric therapy in the 95 patients with pure viral infection for a total of 466 days-of-therapy. Vancomycin (50.7 %), cefepime (40.3 %), azithromycin (40.3 %), meropenem (23.9 %), and linezolid (20.9 %) were most frequently used. In-hospital mortality did not differ between patients with viral pneumonia in the short-course and long-course groups. Subsequent infection/colonization with a MDRO was more frequent in the long-course group compared to the short-course group (53.2 vs 21.1 %; P = 0.027). CONCLUSION: This study found that long-course antibacterial use in the setting of viral pneumonia had no impact on clinical outcomes but increased the incidence of subsequent MDRO infection/colonization
Epidemiology, co-infections, and outcomes of viral pneumonia in adults an observational cohort study
Advanced technologies using polymerase-chain reaction have allowed for increased recognition of viral respiratory infections including pneumonia. Co-infections have been described for several respiratory viruses, especially with influenza. Outcomes of viral pneumonia, including cases with co-infections, have not been well described. This was observational cohort study conducted to describe hospitalized patients with viral pneumonia including co-infections, clinical outcomes, and predictors of mortality. Patients admitted from March 2013 to November 2014 with a positive respiratory virus panel (RVP) and radiographic findings of pneumonia within 48 h of the index RVP were included. Co-respiratory infection (CRI) was defined as any organism identification from a respiratory specimen within 3 days of the index RVP. Predictors of in-hospital mortality on univariate analysis were evaluated in a multivariate model. Of 284 patients with viral pneumonia, a majority (51.8%) were immunocompromised. A total of 84 patients (29.6%) were found to have a CRI with 48 (57.6%) having a bacterial CRI. Viral CRI with HSV, CMV, or both occurred in 28 patients (33.3%). Fungal (16.7%) and other CRIs (7.1%) were less common. Many patients required mechanical ventilation (54%) and vasopressor support (36%). Overall in-hospital mortality was high (23.2%) and readmissions were common with several patients re-hospitalized within 30 (21.1%) and 90 days (36.7%) of discharge. Predictors of in-hospital mortality on multivariate regression included severity of illness factors, stem-cell transplant, and identification of multiple respiratory viruses. In conclusion, hospital mortality is high among adult patients with viral pneumonia and patients with multiple respiratory viruses identified may be at a higher risk
- …