10,772 research outputs found

    Comment on "Interaction Effects in Conductivity of Si Inversion Layers at Intermediate Temperatures"

    Full text link
    We show that the comparison between theory and experiment, performed by Pudalov et al. in PRL 91, 126403 (2003), is not valid.Comment: comment on PRL 91, 126403 (2003) by Pudalov et a

    Magnetoresistance of a two-dimensional electron gas in a parallel magnetic field

    Full text link
    The conductivity of a two-dimensional electron gas in a parallel magnetic field is calculated. We take into account the magnetic field induced spin-splitting, which changes the density of states, the Fermi momentum and the screening behavior of the electron gas. For impurity scattering we predict a positive magnetoresistance for low electron density and a negative magnetoresistance for high electron density. The theory is in qualitative agreement with recent experimental results found for Si inversion layers and Si quantum wells.Comment: 4 pages, figures included, PDF onl

    Tomography of the red supergiant star {\mu} Cep

    Full text link
    A tomographic method, aiming at probing velocity fields at depth in stellar atmospheres, is applied to the red supergiant star {\mu} Cep and to snapshots of 3D radiative-hydrodynamics simulation in order to constrain atmospheric motions and relate them to photometric variability.Comment: 2 pages, 2 figures, accepted as Proceedings of IAU Symposium No. 343, 201

    Multifractal detrended cross-correlation analysis for two nonstationary signals

    Full text link
    It is ubiquitous in natural and social sciences that two variables, recorded temporally or spatially in a complex system, are cross-correlated and possess multifractal features. We propose a new method called multifractal detrended cross-correlation analysis (MF-DXA) to investigate the multifractal behaviors in the power-law cross-correlations between two records in one or higher dimensions. The method is validated with cross-correlated 1D and 2D binomial measures and multifractal random walks. Application to two financial time series is also illustrated.Comment: 4 RevTex pages including 6 eps figure

    Magnetic Field Suppression of the Conducting Phase in Two Dimensions

    Full text link
    The anomalous conducting phase that has been shown to exist in zero field in dilute two-dimensional electron systems in silicon MOSFETs is driven into a strongly insulating state by a magnetic field of about 20 kOe applied parallel to the plane. The data suggest that in the limit of T -> 0 the conducting phase is suppressed by an arbitrarily weak magnetic field. We call attention to striking similarities to magnetic field-induced superconductor-insulator transitions

    A New Liquid Phase and Metal-Insulator Transition in Si MOSFETs

    Full text link
    We argue that there is a new liquid phase in the two-dimensional electron system in Si MOSFETs at low enough electron densities. The recently observed metal-insulator transition results as a crossover from the percolation transition of the liquid phase through the disorder landscape in the system below the liquid-gas critical temperature. The consequences of our theory are discussed for variety of physical properties relevant to the recent experiments.Comment: 12 pages of RevTeX with 3 postscript figure

    Flow diagram of the metal-insulator transition in two dimensions

    Full text link
    The discovery of the metal-insulator transition (MIT) in two-dimensional (2D) electron systems challenged the veracity of one of the most influential conjectures in the physics of disordered electrons, which states that `in two dimensions, there is no true metallic behaviour'; no matter how weak the disorder, electrons would be trapped and unable to conduct a current. However, that theory did not account for interactions between the electrons. Here we investigate the interplay between the electron-electron interactions and disorder near the MIT using simultaneous measurements of electrical resistivity and magnetoconductance. We show that both the resistance and interaction amplitude exhibit a fan-like spread as the MIT is crossed. From these data we construct a resistance-interaction flow diagram of the MIT that clearly reveals a quantum critical point, as predicted by the two-parameter scaling theory (Punnoose and Finkel'stein, Science 310, 289 (2005)). The metallic side of this diagram is accurately described by the renormalization group theory without any fitting parameters. In particular, the metallic temperature dependence of the resistance sets in when the interaction amplitude reaches gamma_2 = 0.45 - a value in remarkable agreement with the one predicted by the theory.Comment: as publishe

    AUTOMATED COMPUTER SYSTEM FOR INTERACTIVE COMMUNICATION WITH А DRIVER

    Get PDF
    The electronic system which serves for the convenience of driving and improve neut of traffic safety has been regarded. Innovative development of an integrated system of voice control with the possibility of interactive communication and the function of preventing from falling asleep has been given
    corecore