65 research outputs found

    Mode entanglement of electrons in the one-dimensional Frenkel-Kontorova model

    Full text link
    We study the mode entanglement in the one-dimensional Frenkel-Kontorova model, and found that behaviors of quantum entanglement are distinct before and after the transition by breaking of analyticity. We show that the more extended the electron is, the more entangled the corresponding state. Finally, a quantitative relation is given between the average square of the concurrence quantifying the degree of entanglement and the participation ratio characterizing the degree of localization.Comment: 4 pages, 4 figures. V

    Phase Diagram and Commensurate-Incommensurate Transitions in the Phase Field Crystal Model with an External Pinning Potential

    Get PDF
    We study the phase diagram and the commensurate-incommensurate transitions in a phase field model of a two-dimensional crystal lattice in the presence of an external pinning potential. The model allows for both elastic and plastic deformations and provides a continuum description of lattice systems, such as for adsorbed atomic layers or two-dimensional vortex lattices. Analytically, a mode expansion analysis is used to determine the ground states and the commensurate-incommensurate transitions in the model as a function of the strength of the pinning potential and the lattice mismatch parameter. Numerical minimization of the corresponding free energy shows good agreement with the analytical predictions and provides details on the topological defects in the transition region. We find that for small mismatch the transition is of first-order, and it remains so for the largest values of mismatch studied here. Our results are consistent with results of simulations for atomistic models of adsorbed overlayers

    A gauge theoretic approach to elasticity with microrotations

    Full text link
    We formulate elasticity theory with microrotations using the framework of gauge theories, which has been developed and successfully applied in various areas of gravitation and cosmology. Following this approach, we demonstrate the existence of particle-like solutions. Mathematically this is due to the fact that our equations of motion are of Sine-Gordon type and thus have soliton type solutions. Similar to Skyrmions and Kinks in classical field theory, we can show explicitly that these solutions have a topological origin.Comment: 15 pages, 1 figure; revised and extended version, one extra page; revised and extended versio

    Nonlinear Driven Response of a Phase-Field Crystal in a Periodic Pinning Potential

    Get PDF
    We study numerically the phase diagram and the response under a driving force of the phase field crystal model for pinned lattice systems introduced recently for both one and two dimensional systems. The model describes the lattice system as a continuous density field in the presence of a periodic pinning potential, allowing for both elastic and plastic deformations of the lattice. We first present results for phase diagrams of the model in the absence of a driving force. The nonlinear response to a driving force on an initially pinned commensurate phase is then studied via overdamped dynamic equations of motion for different values of mismatch and pinning strengths. For large pinning strength the driven depinning transitions are continuous, and the sliding velocity varies with the force from the threshold with power-law exponents in agreement with analytical predictions. Transverse depinning transitions in the moving state are also found in two dimensions. Surprisingly, for sufficiently weak pinning potential we find a discontinuous depinning transition with hysteresis even in one dimension under overdamped dynamics. We also characterize structural changes of the system in some detail close to the depinning transition

    Wavefronts may move upstream in doped semiconductor superlattices

    Get PDF
    In weakly coupled, current biased, doped semiconductor superlattices, domain walls may move upstream against the flow of electrons. For appropriate doping values, a domain wall separating two electric field domains moves downstream below a first critical current, it remains stationary between this value and a second critical current, and it moves upstream above. These conclusions are reached by using a comparison principle to analyze a discrete drift-diffusion model, and validated by numerical simulations. Possible experimental realizations are suggested.Comment: 12 pages, 11 figures, 2-column RevTex, Phys. Rev. E 61, 1 May 200

    Energy characteristics of mechanical twinning in a model of a defective polymer crystal

    No full text

    Tensile tests on glass-reinforced plastics

    No full text
    • …
    corecore