5,217 research outputs found
Experimental and numerical study of SiON microresonators with air and polymer cladding
A systematic experimental and numerical study of the device performance of waveguide-coupled SiON microresonators with air and polymer cladding is presented. Values of device parameters like propagation losses of the microresonator modes, the off-resonance insertion losses, and the straight waveguide to microresonator coupling are determined by applying a detailed fitting procedure to the experimental results and compared to results of detailed numerical simulations. By comparing the propagation losses of the fundamental TE polarized microresonator mode obtained by fitting to the measured spectra to the also experimentally determined propagation losses in the adjacent straight waveguide and the materials losses, it is possible to identify the loss mechanisms in the microresonator. By comparing experimental results for microresonators with air and polymethylmethacrylate cladding and a detailed numerical study, the influence of the cladding index on the bend losses is evaluated. It is demonstrated that the presence of an upper cladding can, under the right conditions, actually be beneficial for loss reduction
The footprint of cometary dust analogs: I. Laboratory experiments of low-velocity impacts and comparison with Rosetta data
Cometary dust provides a unique window on dust growth mechanisms during the
onset of planet formation. Measurements by the Rosetta spacecraft show that the
dust in the coma of comet 67P/Churyumov-Gerasimenko has a granular structure at
size scales from sub-um up to several hundreds of um, indicating hierarchical
growth took place across these size scales. However, these dust particles may
have been modified during their collection by the spacecraft instruments. Here
we present the results of laboratory experiments that simulate the impact of
dust on the collection surfaces of COSIMA and MIDAS, instruments onboard the
Rosetta spacecraft. We map the size and structure of the footprints left by the
dust particles as a function of their initial size (up to several hundred um)
and velocity (up to 6 m/s). We find that in most collisions, only part of the
dust particle is left on the target; velocity is the main driver of the
appearance of these deposits. A boundary between sticking/bouncing and
fragmentation as an outcome of the particle-target collision is found at v ~ 2
m/s. For velocities below this value, particles either stick and leave a single
deposit on the target plate, or bounce, leaving a shallow footprint of
monomers. At velocities > 2 m/s and sizes > 80 um, particles fragment upon
collision, transferring up to 50 per cent of their mass in a rubble-pile-like
deposit on the target plate. The amount of mass transferred increases with the
impact velocity. The morphologies of the deposits are qualitatively similar to
those found by the COSIMA instrument.Comment: 14 pages, 12 figures, accepted for publication in MNRA
Proton Motive Force-Dependent Hoechst 33342 Transport by the ABC Transporter LmrA of Lactococcus lactis
The fluorescent compound Hoechst 33342 is a substrate for many multidrug resistance (MDR) transporters and is widely used to characterize their transport activity. We have constructed mutants of the adenosine triphosphate (ATP) binding cassette (ABC)-type MDR transporter LmrA of Lactococcus lactis that are defective in ATP hydrolysis. These mutants and wild-type LmrA exhibited an atypical behavior in the Hoechst 33342 transport assay. In membrane vesicles, Hoechst 33342 transport was shown to be independent of the ATPase activity of LmrA, and it was not inhibited by orthovanadate but sensitive to uncouplers that collapse the proton gradient and to N,N'-dicyclohexylcarbodiimide, an inhibitor of the F0F1-ATPase. In contrast, transport of Hoechst 33342 by the homologous, heterodimeric MDR transporter LmrCD showed a normal ATP dependence and was insensitive to uncouplers of the proton gradient. With intact cells, expression of LmrA resulted in an increased rate of Hoechst 33342 influx while LmrCD caused a decrease in the rate of Hoechst 33342 influx. Cellular toxicity assays using a triple knockout strain, i.e., L. lactis ΔlmrA ΔlmrCD, demonstrate that expression of LmrCD protects cells against the growth inhibitory effects of Hoechst 33342, while in the presence of LmrA, cells are more susceptible to Hoechst 33342. Our data demonstrate that the LmrA-mediated Hoechst 33342 transport in membrane vesicles is influenced by the transmembrane pH gradient due to a pH-dependent partitioning of Hoechst 33342 into the membrane.
On Large Volume Moduli Stabilization in IIB Orientifolds
I present a brief introduction to the construction of explicit type IIB orientifold compactifications and summarize the ‘Large Volume Scenario’ on compact four-modulus Calabi–Yau manifolds. I discuss the relevance of this kind of setups for the physical MSSMlike model building and gravitational cosmology. These notes are based on my talk at the ‘Bogolyubov Kyiv Conference 2009’ on ‘Modern Problems of Theoretical and Mathematical Physics’.Подано короткий вступ до побудови явних компактифiкацiй IIБ орiєнтованих множин та розглянуто “сценарiй великих об’ємiв” для компактних чотиримодульних Калабi–Яу многовидiв. Обговорено доречнiсть таких схем для побудови фiзичної моделi МССМ-типу та для гравiтацiйної космологiї. Основою роботи є доповiдь на “Боголюбовськiй київськiй конференцiї 2009” з “Сучасних проблем теоретичної та математичної фiзики”
Calibration of the LOFAR low-band antennas using the Galaxy and a model of the signal chain
The LOw-Frequency ARray (LOFAR) is used to make precise measurements of radio
emission from extensive air showers, yielding information about the primary
cosmic ray. Interpreting the measured data requires an absolute and
frequency-dependent calibration of the LOFAR system response. This is
particularly important for spectral analyses, because the shape of the detected
signal holds information about the shower development. We revisit the
calibration of the LOFAR antennas in the range of 30 - 80 MHz. Using the
Galactic emission and a detailed model of the LOFAR signal chain, we find an
improved calibration that provides an absolute energy scale and allows for the
study of frequency-dependent features in measured signals. With the new
calibration, systematic uncertainties of 13% are reached, and comparisons of
the spectral shape of calibrated data with simulations show promising
agreement.Comment: 23 pages, 10 figure
Cosmic Ray Physics with the LOFAR Radio Telescope
The LOFAR radio telescope is able to measure the radio emission from cosmic
ray induced air showers with hundreds of individual antennas. This allows for
precision testing of the emission mechanisms for the radio signal as well as
determination of the depth of shower maximum , the shower observable
most sensitive to the mass of the primary cosmic ray, to better than 20
g/cm. With a densely instrumented circular area of roughly 320 m, LOFAR
is targeting for cosmic ray astrophysics in the energy range -
eV. In this contribution we give an overview of the status, recent
results, and future plans of cosmic ray detection with the LOFAR radio
telescope.Comment: Proceedings of the 26th Extended European Cosmic Ray Symposium
(ECRS), Barnaul/Belokurikha, 201
TNF- α augments intratumoural concentrations of doxorubicin in TNF- α -based isolated limb perfusion in rat sarcoma models and enhances anti-tumour effects
We have shown previously that isolated limb perfusion (ILP) in sarcoma-bearing rats results in high response rates when melphalan is used in combination with tumour necrosis factor alpha (TNF-α). This is in line with observations in patients. Here we show that ILP with doxorubicin in combination with TNF-α has comparable effects in two different rat sarcoma tumour models. The addition of TNF-α exhibits a synergistic anti-tumour effect, resulting in regression of the tumour in 54% and 100% of the cases for the BN175-fibrosarcoma and the ROS-1 osteosarcoma respectively. The combination is shown to be mandatory for optimal tumour response. The effect of high dose TNF-α on the activity of cytotoxic agents in ILP is still unclear. We investigated possible modes by which TNF-α could modulate the activity of doxorubicin. In both tumour models increased accumulation of doxorubicin in tumour tissue was found: 3.1-fold in the BN175 and 1.8-fold in the ROS-1 sarcoma after ILP with doxorubicin combined with TNF-α in comparison with an ILP with doxorubicin alone. This increase in local drug concentration may explain the synergistic anti-tumour responses after ILP with the combination. In vitro TNF-α fails to augment drug uptake in tumour cells or to increase cytotoxicity of the drug. These findings make it unlikely that TNF-α directly modulates the activity of doxorubicin in vivo. As TNF-α by itself has no or only minimal effect on tumour growth, an increase in local concentrations of chemotherapeutic drugs might well be the main mechanism for the synergistic anti-tumour effects. © 2000 Cancer Research Campaig
The cardiac sodium channel displays differential distribution in the conduction system and transmural heterogeneity in the murine ventricular myocardium
Cardiac sodium channels are responsible for conduction in the normal and diseased heart. We aimed to investigate regional and transmural distribution of sodium channel expression and function in the myocardium. Sodium channel Scn5a mRNA and Na(v)1.5 protein distribution was investigated in adult and embryonic mouse heart through immunohistochemistry and in situ hybridization. Functional sodium channel availability in subepicardial and subendocardial myocytes was assessed using patch-clamp technique. Adult and embryonic (ED14.5) mouse heart sections showed low expression of Na(v)1.5 in the HCN4-positive sinoatrial and atrioventricular nodes. In contrast, high expression levels of Na(v)1.5 were observed in the HCN4-positive and Cx43-negative AV or His bundle, bundle branches and Purkinje fibers. In both ventricles, a transmural gradient was observed, with a low Na(v)1.5 labeling intensity in the subepicardium as compared to the subendocardium. Similar Scn5a mRNA expression patterns were observed on in situ hybridization of embryonic and adult tissue. Maximal action potential upstroke velocity was significantly lower in subepicardial myocytes (mean +/- SEM 309 +/- 32 V/s; n = 14) compared to subendocardial myocytes (394 +/- 32 V/s; n = 11; P < 0.05), indicating decreased sodium channel availability in subepicardium compared to subendocardium. Scn5a and Na(v)1.5 show heterogeneous distribution patterns within the cardiac conduction system and across the ventricular wall. This differential distribution of the cardiac sodium channel may have profound consequences for conduction disease phenotypes and arrhythmogenesis in the setting of sodium channel diseas
- …