2,989 research outputs found
Standard model explanation of a CDF dijet excess in Wjj
We demonstrate the recent observation of a peak in the dijet invariant mass
of the Wjj signal observed by the CDF Collaboration can be explained as the
same upward fluctuation observed by CDF in single-top-quark production. In
general, both t-channel and s-channel single-top-quark production produce
kinematically induced peaks in the dijet spectrum. Since CDF used a Monte Carlo
simulation to subtract the single-top backgrounds instead of data, a peak in
the dijet spectrum is expected. The D0 Collaboration has a small upward
fluctuation in their published t-channel data; and hence we predict they would
see at most a small peak in the dijet invariant mass spectrum of Wjj if they
follow the same procedure as CDF.Comment: 3 pg., 2 figs, revtex, minor clarifications, to appear in Phys. Rev.
Searches for Physics Beyond the Standard Model at Colliders
All experimental measurements of particle physics today are beautifully
described by the Standard Model. However, there are good reasons to believe
that new physics may be just around the corner at the TeV energy scale. This
energy range is currently probed by the Tevatron and HERA accelerators and
selected results of searches for physics beyond the Standard Model are
presented here. No signals for new physics have been found and limits are
placed on the allowed parameter space for a variety of different particles.Comment: Proceedings for 2007 Europhysics Conference on High Energy Physics,
Manchester, July 200
Prompt Decays of General Neutralino NLSPs at the Tevatron
Recent theoretical developments have shown that gauge mediation has a much
larger parameter space of possible spectra and mixings than previously
considered. Motivated by this, we explore the collider phenomenology of gauge
mediation models where a general neutralino is the lightest MSSM superpartner
(the NLSP), focusing on the potential reach from existing and future Tevatron
searches. Promptly decaying general neutralino NLSPs can give rise to final
states involving missing energy plus photons, Zs, Ws and/or Higgses. We survey
the final states and determine those where the Tevatron should have the most
sensitivity. We then estimate the reach of existing Tevatron searches in these
final states and discuss new searches (or optimizations of existing ones) that
should improve the reach. Finally we comment on the potential for discovery at
the LHC.Comment: 41 pages, minor changes, added refs and discussion of previous
literatur
Measurements of the Production, Decay and Properties of the Top Quark: A Review
With the full Tevatron Run II and early LHC data samples, the opportunity for
furthering our understanding of the properties of the top quark has never been
more promising. Although the current knowledge of the top quark comes largely
from Tevatron measurements, the experiments at the LHC are poised to probe
top-quark production and decay in unprecedented regimes. Although no current
top quark measurements conclusively contradict predictions from the standard
model, the precision of most measurements remains statistically limited.
Additionally, some measurements, most notably the forward-backward asymmetry in
top quark pair production, show tantalizing hints of beyond-the-Standard-Model
dynamics. The top quark sample is growing rapidly at the LHC, with initial
results now public. This review examines the current status of top quark
measurements in the particular light of searching for evidence of new physics,
either through direct searches for beyond the standard model phenomena or
indirectly via precise measurements of standard model top quark properties
A Fast Track towards the `Higgs' Spin and Parity
The LHC experiments ATLAS and CMS have discovered a new boson that resembles
the long-sought Higgs boson: it cannot have spin one, and has couplings to
other particles that increase with their masses, but the spin and parity remain
to be determined. We show here that the `Higgs' + gauge boson invariant-mass
distribution in `Higgs'-strahlung events at the Tevatron or the LHC would be
very different under the J^P = 0+, 0- and 2+ hypotheses, and could provide a
fast-track indicator of the `Higgs' spin and parity. Our analysis is based on
simulations of the experimental event selections and cuts using PYTHIA and
Delphes, and incorporates statistical samples of `toy' experiments.Comment: 18 pages, 9 pdf figure
Extracting Muon Momentum Scale Corrections for Hadron Collider Experiments
We present a simple method for the extraction of corrections for bias in the
measurement of the momentum of muons in hadron collider experiments. Such bias
can originate from a variety of sources such as detector misalignment, software
reconstruction bias, and uncertainties in the magnetic field. The two step
method uses the mean for muons from $Z\to \mu\mu$ decays to
determine the momentum scale corrections in bins of charge, $\eta$ and $\phi$.
In the second step, the corrections are tuned by using the average invariant
mass of events in the same bins of charge
and . The forward-backward asymmetry of pairs
as a function of mass, and the distribution of bosons
in the Collins-Soper frame are used to ascertain that the corrections remove
the bias in the momentum measurements for positive versus negatively charged
muons. By taking the sum and difference of the momentum scale corrections for
positive and negative muons, we isolate additive corrections to
that may originate from misalignments and multiplicative corrections that may
originate from mis-modeling of the magnetic field . This method has recently been used in the CDF experiment at
Fermilab and in the CMS experiment at the Large Hadron Collider at CERNComment: 6 pages, 3 figures, to be published in EPJC 201
Precision measurements of the top quark mass from the Tevatron in the pre-LHC era
The top quark is the heaviest of the six quarks of the Standard Model.
Precise knowledge of its mass is important for imposing constraints on a number
of physics processes, including interactions of the as yet unobserved Higgs
boson. The Higgs boson is the only missing particle of the Standard Model,
central to the electroweak symmetry breaking mechanism and generation of
particle masses. In this Review, experimental measurements of the top quark
mass accomplished at the Tevatron, a proton-antiproton collider located at the
Fermi National Accelerator Laboratory, are described. Topologies of top quark
events and methods used to separate signal events from background sources are
discussed. Data analysis techniques used to extract information about the top
mass value are reviewed. The combination of several most precise measurements
performed with the two Tevatron particle detectors, CDF and \D0, yields a value
of \Mt = 173.2 \pm 0.9 GeV/.Comment: This version contains the most up-to-date top quark mass averag
- âŠ