802 research outputs found
OrChem - An open source chemistry search engine for Oracle®
<p>Abstract</p> <p>Background</p> <p>Registration, indexing and searching of chemical structures in relational databases is one of the core areas of cheminformatics. However, little detail has been published on the inner workings of search engines and their development has been mostly closed-source. We decided to develop an open source chemistry extension for Oracle, the de facto database platform in the commercial world.</p> <p>Results</p> <p>Here we present OrChem, an extension for the Oracle 11G database that adds registration and indexing of chemical structures to support fast substructure and similarity searching. The cheminformatics functionality is provided by the Chemistry Development Kit. OrChem provides similarity searching with response times in the order of seconds for databases with millions of compounds, depending on a given similarity cut-off. For substructure searching, it can make use of multiple processor cores on today's powerful database servers to provide fast response times in equally large data sets.</p> <p>Availability</p> <p>OrChem is free software and can be redistributed and/or modified under the terms of the GNU Lesser General Public License as published by the Free Software Foundation. All software is available via <url>http://orchem.sourceforge.net</url>.</p
Online Pattern Recognition for the ALICE High Level Trigger
The ALICE High Level Trigger has to process data online, in order to select
interesting (sub)events, or to compress data efficiently by modeling
techniques.Focusing on the main data source, the Time Projection Chamber (TPC),
we present two pattern recognition methods under investigation: a sequential
approach "cluster finder" and "track follower") and an iterative approach
("track candidate finder" and "cluster deconvoluter"). We show, that the former
is suited for pp and low multiplicity PbPb collisions, whereas the latter might
be applicable for high multiplicity PbPb collisions, if it turns out, that more
than 8000 charged particles would have to be reconstructed inside the TPC.
Based on the developed tracking schemes we show, that using modeling techniques
a compression factor of around 10 might be achievableComment: Realtime Conference 2003, Montreal, Canada to be published in IEEE
Transactions on Nuclear Science (TNS), 6 pages, 8 figure
Access 3 project protocol: Young people and health system navigation in the digital age: A multifaceted, mixed methods study
© 2017 Article author(s). Background: The integration of digital technology into everyday lives of young people has become widespread. It is not known whether and how technology influences barriers and facilitators to healthcare, and whether and how young people navigate between face-to-face and virtual healthcare. To provide new knowledge essential to policy and practice, we designed a study that would explore health system access and navigation in the digital age. The study objectives are to: (1) describe experiences of young people accessing and navigating the health system in New South Wales (NSW), Australia; (2) identify barriers and facilitators to healthcare for young people and how these vary between groups; (3) describe health system inefficiencies, particularly for young people who are marginalised; (4) provide policy-relevant knowledge translation of the research data. Methods and analysis: This mixed methods study has four parts, including: (1) a cross-sectional survey of young people (12-24 years) residing in NSW, Australia; (2) a longitudinal, qualitative study of a subsample of marginalised young people (defined as young people who: identify as Aboriginal and/or Torres Strait Islander; are experiencing homelessness; identify as sexuality and/or gender diverse; are of refugee or vulnerable migrant background; and/or live in rural or remote NSW); (3) interviews with professionals; (4) a knowledge translation forum. Ethics and dissemination: Ethics approvals were sought and granted. Data collection commenced in March 2016 and will continue until June 2017. This study will gather practice and policy-relevant intelligence about contemporary experiences of young people and health services, with a unique focus on five different groups of marginalised young people, documenting their experiences over time. Access 3 will explore navigation around all levels of the health system, determine whether digital technology is integrated into this, and if so how, and will translate findings into policy-relevant recommendations
Real Time Global Tests of the ALICE High Level Trigger Data Transport Framework
The High Level Trigger (HLT) system of the ALICE experiment is an online
event filter and trigger system designed for input bandwidths of up to 25 GB/s
at event rates of up to 1 kHz. The system is designed as a scalable PC cluster,
implementing several hundred nodes. The transport of data in the system is
handled by an object-oriented data flow framework operating on the basis of the
publisher-subscriber principle, being designed fully pipelined with lowest
processing overhead and communication latency in the cluster. In this paper, we
report the latest measurements where this framework has been operated on five
different sites over a global north-south link extending more than 10,000 km,
processing a ``real-time'' data flow.Comment: 8 pages 4 figure
Intersectionality: Social Marginalisation and Self-Reported Health Status in Young People.
BACKGROUND:The aim of this study was to measure young people's health status and explore associations between health status and belonging to one or more socio-culturally marginalised group. METHODS:part of the Access 3 project, this cross-sectional survey of young people aged 12-24 years living in New South Wales, Australia, oversampled young people from one or more of the following groups: Aboriginal and or Torres Strait Islander; living in rural and remote areas; homeless; refugee; and/or, sexuality and/or gender diverse. This paper reports on findings pertaining to health status, presence of chronic health conditions, psychological distress, and wellbeing measures. RESULTS:1416 participants completed the survey; 897 (63.3%) belonged to at least one marginalised group; 574 (40.5%) to one, 281 (19.8%) to two and 42 (3.0%) to three or four groups. Belonging to more marginalised groups was significantly associated with having more chronic health conditions (p = 0.001), a greater likelihood of high psychological distress (p = 0.001) and of illness or injury related absence from school or work (p < 0.05). CONCLUSIONS:increasing marginalisation is associated with decreasing health status. Using an intersectional lens can to be a useful way to understand disadvantage for young people belonging to multiple marginalised groups
Bioclipse: an open source workbench for chemo- and bioinformatics
BACKGROUND: There is a need for software applications that provide users with a complete and extensible toolkit for chemo- and bioinformatics accessible from a single workbench. Commercial packages are expensive and closed source, hence they do not allow end users to modify algorithms and add custom functionality. Existing open source projects are more focused on providing a framework for integrating existing, separately installed bioinformatics packages, rather than providing user-friendly interfaces. No open source chemoinformatics workbench has previously been published, and no sucessful attempts have been made to integrate chemo- and bioinformatics into a single framework. RESULTS: Bioclipse is an advanced workbench for resources in chemo- and bioinformatics, such as molecules, proteins, sequences, spectra, and scripts. It provides 2D-editing, 3D-visualization, file format conversion, calculation of chemical properties, and much more; all fully integrated into a user-friendly desktop application. Editing supports standard functions such as cut and paste, drag and drop, and undo/redo. Bioclipse is written in Java and based on the Eclipse Rich Client Platform with a state-of-the-art plugin architecture. This gives Bioclipse an advantage over other systems as it can easily be extended with functionality in any desired direction. CONCLUSION: Bioclipse is a powerful workbench for bio- and chemoinformatics as well as an advanced integration platform. The rich functionality, intuitive user interface, and powerful plugin architecture make Bioclipse the most advanced and user-friendly open source workbench for chemo- and bioinformatics. Bioclipse is released under Eclipse Public License (EPL), an open source license which sets no constraints on external plugin licensing; it is totally open for both open source plugins as well as commercial ones. Bioclipse is freely available at
Real-time TPC Analysis with the ALICE High-Level Trigger
The ALICE High-Level Trigger processes data online, to either select
interesting (sub-) events, or to compress data efficiently by modeling
techniques.
Focusing on the main data source, the Time Projection Chamber, the
architecure of the system and the current state of the tracking and compression
methods are outlined.Comment: 6 pages, 5 figures, to be published in NIM
A critical evaluation of automatic atom mapping algorithms and tools
The identification of the atoms which change their position in chemical reactions is an important knowledge within the field of Metabolic Engineering. This can lead to new advances at different levels from the reconstruction of metabolic networks to the classification of chemical reactions, through the identification of the atomic changes inside a reaction. The Atom Mapping approach was initially developed in the 1960s, but recently suffered important advances, being used in diverse biological and biotechnological studies. The main methodologies used for atom mapping are the Maximum Common Substructure and the Linear Optimization methods, which both require computational know-how and powerful resources to run the underlying tools.
In this work, we assessed a number of previously implemented atom mapping frameworks, and built a framework able of managing the different data inputs and outputs, as well as the mapping process provided by each of these third-party tools. We evaluated the admissibility of the calculated atom maps from different algorithms, also assessing if with different approaches we were capable of returning equivalent atom maps for the same chemical reaction.ERDF -European Regional Development Fund(UID/BIO/04469/2013)info:eu-repo/semantics/publishedVersio
Calculation of magnetic anisotropy energy in SmCo5
SmCo5 is an important hard magnetic material, due to its large magnetic
anisotropy energy (MAE). We have studied the magnetic properties of SmCo5 using
density functional theory (DFT) calculations where the Sm f-bands, which are
difficult to include in DFT calculations, have been treated within the LDA+U
formalism. The large MAE comes mostly from the Sm f-shell anisotropy, stemming
from an interplay between the crystal field and the spin-orbit coupling. We
found that both are of similar strengths, unlike some other Sm compounds,
leading to a partial quenching of the orbital moment (f-states cannot be
described as either pure lattice harmonics or pure complex harmonics), an
optimal situation for enhanced MAE. A smaller portion of the MAE can be
associated with the Co-d band anisotropy, related to the peak in the density of
states at the Fermi energy. Our result for the MAE of SmCo5, 21.6 meV/f.u.,
agrees reasonably with the experimental value of 13-16 meV/f.u., and the
calculated magnetic moment (including the orbital component) of 9.4 mu_B agrees
with the experimental value of 8.9 mu_B.Comment: Submitted to Phys. Rev.
- …