22 research outputs found
Observations of Lensed Relativistic Jets as a Tool of Constraining Lens Galaxy Parameters
The possibility of using lensed relativistic jets on very small angular
scales to construct proper models of spiral lens galaxies and to independently
determine the Hubble constant is considered. The system B0218+357 is used as an
example to illustrate that there exists a great choice of model parameters
adequately reproducing its observed large-scale properties but leading to a
significant spread in the Hubble constant. The jet image position angle is
suggested as an additional parameter that allows the range of models under
consideration to be limited. It is shown that the models for which the jet
image position angles differ by at least can be distinguished between
themselves during observations on very small angular scales. The possibility of
observing the geometric properties of lensed relativistic jets and measuring
the superluminal velocities of knot images on time scales of several months
with very long baseline space interferometers is discussed.Comment: 11 pages, 3 figures, Will be published in the Astronomy Letters,
V.37, PP.483-490, 201
On the Possibility of Observing the Shapiro Effect for Pulsars in Globular Clusters
For pulsars in globular clusters, we suggest using observations of the
relativistic time delay of their radiation in the gravitational eld of a
massive body (the Shapiro effect) located close to the line of sight to detect
and identify invisible compact objects and to study the distribution of both
visible and dark matter in globular clusters and various components of the
Galaxy. We have derived the dependences of the event probability on the
Galactic latitude and longitude of sources for two models of the mass
distribution in the Galaxy: the classical Bahcall-Soneira model and the more
recent Dehnen-Binney model. Using three globular clusters (M15, 47 Tuc, Terzan
5) as an example, we show that the ratios of the probability of the events due
to the passages of massive Galactic objects close to the line of sight to the
parameter f2 for pulsars in the globular clusters 47 Tuc and M15 are comparable
to those for close passages of massive objects in the clusters themselves and
are considerably higher than those for the cluster Terzan 5. We have estimated
the rates of such events. We have determined the number of objects near the
line of sight toward the pulsar that can produce a modulation of its pulse
arrival times characteristic of the effect under consideration; the population
of brown dwarfs in the Galactic disk, whose concentration is comparable to that
of the disk stars, has been taken into account for the first time.Comment: 26 pages, 9 figure
Review of scientific topics for Millimetron space observatory
This paper describes outstanding issues in astrophysics and cosmology that
can be solved by astronomical observations in a broad spectral range from far
infrared to millimeter wavelengths. The discussed problems related to the
formation of stars and planets, galaxies and the interstellar medium, studies
of black holes and the development of the cosmological model can be addressed
by the planned space observatory Millimetron (the "Spectr-M" project) equipped
with a cooled 10-m mirror. Millimetron can operate both as a single-dish
telescope and as a part of a space-ground interferometer with very long
baseline.Comment: The translation of the original article in Physics Uspekhi
http://ufn.ru/ru/articles/2014/12/c
Prospects for Detecting Dark Matter Halo Substructure with Pulsar Timing
One of the open questions of modern cosmology is the nature and properties of
the Dark Matter halo and its substructures. In this work we study the
gravitational effect of dark matter substructures on pulsar timing
observations. Since millisecond pulsars are stable and accurate emitters, they
have been proposed as plausible astrophysical tools to probe the gravitational
effects of dark matter structures. We study this effect on pulsar timing
through Shapiro time delay (or Integrated Sachs-Wolfe (ISW) effect) and Doppler
effects statistically, showing that the latter dominates the signal. For this
task, we relate the power spectrum of pulsar frequency change to the matter
power spectrum on small scales, which we compute using the stable clustering
hypothesis. We compare this power spectrum with the reach of current and future
observations of pulsar timing designed for gravitational wave (GW) detection.
Our results show that while current observations are unable to detect these
signals, the sensitivity of the upcoming Square Kilometer Array (SKA) is only a
factor of few weaker than our optimistic predictions.Comment: 12 pages, 10 figures. Final Versio
Shapiro Effect as a Possible Cause of the Low-Frequency Pulsar Timing Noise in Globular Clusters
A prolonged timing of millisecond pulsars has revealed low-frequency
uncorrelated noise, presumably of astrophysical origin, in the pulse arrival
time (PAT) residuals for some of them. In most cases, pulsars in globular
clusters show a low-frequency modulation of their rotational phase and spin
rate. The relativistic time delay of the pulsar signal in the curved space time
of randomly distributed and moving globular cluster stars (the Shapiro effect)
is suggested as a possible cause of this modulation.
Given the smallness of the aberration corrections that arise from the
nonstationarity of the gravitational field of the randomly distributed ensemble
of stars under consideration, a formula is derived for the Shapiro effect for a
pulsar in a globular cluster. The derived formula is used to calculate the
autocorrelation function of the low-frequency pulsar noise, the slope of its
power spectrum, and the behavior of the statistic that characterizes
the spectral properties of this noise in the form of a time function. The
Shapiro effect under discussion is shown to manifest itself for large impact
parameters as a low-frequency noise of the pulsar spin rate with a spectral
index of n=-1.8 that depends weakly on the specific model distribution of stars
in the globular cluster. For small impact parameters, the spectral index of the
noise is n=-1.5.Comment: 23 pages, 6 figure