5,659 research outputs found

    Large Magnetic Susceptibility Anisotropy of Metallic Carbon Nanotubes

    Full text link
    Through magnetic linear dichroism spectroscopy, the magnetic susceptibility anisotropy of metallic single-walled carbon nanotubes has been extracted and found to be 2-4 times greater than values for semiconducting single-walled carbon nanotubes. This large anisotropy is consistent with our calculations and can be understood in terms of large orbital paramagnetism of electrons in metallic nanotubes arising from the Aharonov-Bohm-phase-induced gap opening in a parallel field. We also compare our values with previous work for semiconducting nanotubes, which confirm a break from the prediction that the magnetic susceptibility anisotropy increases linearly with the diameter.Comment: 4 pages, 4 figure

    The ATLAS trigger menu for early data-taking

    Full text link
    The ATLAS trigger system is based on three levels of event selection that select the physics of interest from an initial bunch-crossing rate of 40 MHz. During nominal LHC operations at a luminosity of 10^34 cm^-2 s^-1, decisions must be taken every 25 ns with each bunch crossing containing about 23 interactions. The selections in the three trigger levels must provide sufficient rejection to reduce the rate down to 200 Hz, compatible with the offline computing power and storage capacity. The LHC is expected to begin operations in summer 2008 with a peak luminosity of 10^31 cm^-2 s^-1 with far fewer bunches than nominal running, but quickly ramp up to higher luminosities. Hence, we need to deploy trigger selections that can adapt to the changing beam conditions preserving the interesting physics and detector requirements that may vary with these conditions. We present the status of the preparation of the trigger menu for the early data-taking showing how we plan to deploy the trigger system from the first collision to the nominal luminosity. We also show expected rates and physics performance obtained from simulated data.Comment: Poster presentation at the Hadron Collider Physics Symposium (HCP2008), Galena, Illinois, USA, May 27-31, 2008; 5 pages, LaTeX, 2 eps figure

    Magneto-reflection spectroscopy of monolayer transition-metal dichalcogenide semiconductors in pulsed magnetic fields

    Get PDF
    We describe recent experimental efforts to perform polarization-resolved optical spectroscopy of monolayer transition-metal dichalcogenide semiconductors in very large pulsed magnetic fields to 65 tesla. The experimental setup and technical challenges are discussed in detail, and temperature-dependent magneto-reflection spectra from atomically thin tungsten disulphide (WS2_2) are presented. The data clearly reveal not only the valley Zeeman effect in these 2D semiconductors, but also the small quadratic exciton diamagnetic shift from which the very small exciton size can be directly inferred. Finally, we present model calculations that demonstrate how the measured diamagnetic shifts can be used to constrain estimates of the exciton binding energy in this new family of monolayer semiconductors.Comment: PCSI-43 conference (Jan. 2016; Palm Springs, CA

    Exciton Diamagnetic Shifts and Valley Zeeman Effects in Monolayer WS2_2 and MoS2_2 to 65 Tesla

    Get PDF
    We report circularly-polarized optical reflection spectroscopy of monolayer WS2_2 and MoS2_2 at low temperatures (4~K) and in high magnetic fields to 65~T. Both the A and the B exciton transitions exhibit a clear and very similar Zeeman splitting of approximately −-230~μ\mueV/T (g≃−4g\simeq -4), providing the first measurements of the valley Zeeman effect and associated gg-factors in monolayer transition-metal disulphides. These results complement and are compared with recent low-field photoluminescence measurements of valley degeneracy breaking in the monolayer diselenides MoSe2_2 and WSe2_2. Further, the very large magnetic fields used in our studies allows us to observe the small quadratic diamagnetic shifts of the A and B excitons in monolayer WS2_2 (0.32 and 0.11~μ\mueV/T2^2, respectively), from which we calculate exciton radii of 1.53~nm and 1.16~nm. When analyzed within a model of non-local dielectric screening in monolayer semiconductors, these diamagnetic shifts also constrain and provide estimates of the exciton binding energies (410~meV and 470~meV for the A and B excitons, respectively), further highlighting the utility of high magnetic fields for understanding new 2D materials.Comment: 9 pages, 5 figure
    • …
    corecore