8,696 research outputs found

    Smooth (non)rigidity of piecewise rank one locally symmetric manifolds

    Full text link
    We define \emph{piecewise rank 1} manifolds, which are aspherical manifolds that generally do not admit a nonpositively curved metric but can be decomposed into pieces that are diffeomorphic to finite volume, irreducible, locally symmetric, nonpositively curved manifolds with Ο€1\pi_1-injective cusps. We prove smooth (self) rigidity for this class of manifolds in the case where the gluing preserves the cusps' homogeneous structure. We compute the group of self homotopy equivalences of such a manifold and show that it can contain a normal free abelian subgroup and thus, can be infinite. Elements of this abelian subgroup are twists along elements in the center of the fundamental group of a cusp.Comment: 20 pages, 1 figur

    Properties of Generalized Forchheimer Flows in Porous Media

    Full text link
    The nonlinear Forchheimer equations are used to describe the dynamics of fluid flows in porous media when Darcy's law is not applicable. In this article, we consider the generalized Forchheimer flows for slightly compressible fluids and study the initial boundary value problem for the resulting degenerate parabolic equation for pressure with the time-dependent flux boundary condition. We estimate L∞L^\infty-norm for pressure and its time derivative, as well as other Lebesgue norms for its gradient and second spatial derivatives. The asymptotic estimates as time tends to infinity are emphasized. We then show that the solution (in interior L∞L^\infty-norms) and its gradient (in interior L2βˆ’Ξ΄L^{2-\delta}-norms) depend continuously on the initial and boundary data, and coefficients of the Forchheimer polynomials. These are proved for both finite time intervals and time infinity. The De Giorgi and Ladyzhenskaya-Uraltseva iteration techniques are combined with uniform Gronwall-type estimates, specific monotonicity properties, suitable parabolic Sobolev embeddings and a new fast geometric convergence result.Comment: 63 page
    • …
    corecore