215,003 research outputs found

    Dimensional Reduction via Noncommutative Spacetime: Bootstrap and Holography

    Full text link
    Unlike noncommutative space, when space and time are noncommutative, it seems necessary to modify the usual scheme of quantum mechanics. We propose in this paper a simple generalization of the time evolution equation in quantum mechanics to incorporate the feature of a noncommutative spacetime. This equation is much more constraining than the usual Schr\"odinger equation in that the spatial dimension noncommuting with time is effectively reduced to a point in low energy. We thus call the new evolution equation the spacetime bootstrap equation, the dimensional reduction called for by this evolution seems close to what is required by the holographic principle. We will discuss several examples to demonstrate this point.Comment: 15 pages, harvmac. v2: typos corrected and some changes mad

    Fast computation of MadGraph amplitudes on graphics processing unit (GPU)

    Full text link
    Continuing our previous studies on QED and QCD processes, we use the graphics processing unit (GPU) for fast calculations of helicity amplitudes for general Standard Model (SM) processes. Additional HEGET codes to handle all SM interactions are introduced, as well assthe program MG2CUDA that converts arbitrary MadGraph generated HELAS amplitudess(FORTRAN) into HEGET codes in CUDA. We test all the codes by comparing amplitudes and cross sections for multi-jet srocesses at the LHC associated with production of single and double weak bosonss a top-quark pair, Higgs boson plus a weak boson or a top-quark pair, and multisle Higgs bosons via weak-boson fusion, where all the heavy particles are allowes to decay into light quarks and leptons with full spin correlations. All the helicity amplitudes computed by HEGET are found to agree with those comsuted by HELAS within the expected numerical accuracy, and the cross sections obsained by gBASES, a GPU version of the Monte Carlo integration program, agree wish those obtained by BASES (FORTRAN), as well as those obtained by MadGraph. The performance of GPU was over a factor of 10 faster than CPU for all processes except those with the highest number of jets.Comment: 37 pages, 12 figure

    Three-dimensional Inkjet Printed Solid Oxide Electrochemical Reactors. I. Yttria-stabilized zirconia Electrolyte

    Get PDF
    Solid oxide fuel cell (SOFC) and electrolyser (SOE) performances can be enhanced significantly by increasing the densities of (electrode | electrolyte | pore) triple phase boundaries and improving geometric reproducibility and control over composite electrode | electrolyte microstructures, thereby also aiding predictive performance modelling. We developed stable aqueous colloidal dispersions of yttria-stabilized zirconia (YSZ), a common SOFC electrolyte material, and used them to fabricate 2D planar and highly-customisable 3D microstructures by inkjet printing. The effects of solids fraction, particle size, and binder concentration on structures were investigated, and crack-free, non-porous electrolyte planes were obtained by tailoring particle size and minimising binder concentration. Micro-pillar arrays and square lattices were printed with the optimised ink composition, and a minimum feature size of 35 μm was achieved in sintered structures, the smallest published to-date. YSZ particles were printed and sintered to a 23 μm thick planar electrolyte in a Ni-YSZ|YSZ|YSZ-LSM|LSM electrolyser for CO2 splitting; a feed of 9:1 CO2:CO mixture at 1.5 V and 809 °C produced a current density of −0.78 A cm−2 even without more complex 3D electrode | electrolyte geometries

    Fluctuation limits of strongly degenerate branching systems

    Full text link
    Functional limit theorems for scaled fluctuations of occupation time processes of a sequence of critical branching particle systems in Rd\R^d with anisotropic space motions and strongly degenerated splitting abilities are proved in the cases of critical and intermediate dimensions. The results show that the limit processes are constant measure-valued Wienner processes with degenerated temporal and simple spatial structures.Comment: 15 page

    kTk_T factorization of exclusive processes

    Get PDF
    We prove kTk_T factorization theorem in perturbative QCD (PQCD) for exclusive processes by considering πγ∗→γ(π)\pi\gamma^*\to \gamma(\pi) and B→γ(π)lνˉB\to\gamma(\pi) l\bar\nu. The relevant form factors are expressed as the convolution of hard amplitudes with two-parton meson wave functions in the impact parameter bb space, bb being conjugate to the parton transverse momenta kTk_T. The point is that on-shell valence partons carry longitudinal momenta initially, and acquire kTk_T through collinear gluon exchanges. The bb-dependent two-parton wave functions with an appropriate path for the Wilson links are gauge-invariant. The hard amplitudes, defined as the difference between the parton-level diagrams of on-shell external particles and their collinear approximation, are also gauge-invariant. We compare the predictions for two-body nonleptonic BB meson decays derived from kTk_T factorization (the PQCD approach) and from collinear factorization (the QCD factorization approach).Comment: 11 pages, REVTEX, 5 figure

    Ten Dimensional Black Hole and the D0-brane Threshold Bound State

    Get PDF
    We discuss the ten dimensional black holes made of D0-branes in the regime where the effective coupling is large, and yet the 11D geometry is unimportant. We suggest that these black holes can be interpreted as excitations over the threshold bound state. Thus, the entropy formula for the former is used to predict a scaling region of the wave function of the latter. The horizon radius and the mass gap predicted in this picture agree with the formulas derived from the classical geometry.Comment: 11 pages, harvmac; v2: typos corrected, argument for the convergence of two integrals improved, v3: one ref. adde
    • …
    corecore