22,637 research outputs found
Young\u27s modulus of [111] germanium nanowires
This paper reports a diameter-independent Young’s modulus of 91.9 ± 8.2 GPa for [111] Germaniumnanowires (Ge NWs). When the surface oxide layer is accounted for using a core-shell NW approximation, the YM of the Ge core approaches a near theoretical value of 147.6 ± 23.4 GPa. The ultimate strength of a NW device was measured at 10.9 GPa, which represents a very high experimental-to-theoretical strength ratio of ∼75%. With increasing interest in this material system as a high-capacity lithium-ion battery anode, the presented data provide inputs that are essential in predicting its lithiation-induced stress fields and fracture behavior
Photoluminescent characteristics of Ni-catalyzed GaN nanowires
The authors report on time-integrated and time-resolved photoluminescence (PL) of GaN nanowires grown by the Ni-catalyst-assisted vapor-liquid-solid method. From PL spectra of Ni-catalyzed GaN nanowires at 10 K, several PL peaks were observed at 3.472, 3.437, and 3.266 eV, respectively. PL peaks at 3.472 and 3.266 eV are attributed to neutral-donor-bound excitons and donor-acceptor pair, respectively. Furthermore, according to the results from temperature-dependent and time-resolved PL measurements, the origin of the PL peak at 3.437 eV is also discussed. (c) 2006 American Institute of Physics.X1147sciescopu
Superconductivity and Lattice Instability in Compressed Lithium from Fermi Surface Hot Spots
The highest superconducting temperature T observed in any elemental metal
(Li with T ~ 20 K at pressure P ~ 40 GPa) is shown to arise from critical
(formally divergent) electron-phonon coupling to the transverse T phonon
branch along intersections of Kohn anomaly surfaces with the Fermi surface.
First principles linear response calculations of the phonon spectrum and
spectral function reveal (harmonic) instability already at
25 GPa. Our results imply that the fcc phase is anharmonically stabilized in
the 25-38 GPa range.Comment: 4 pages, 3 embedded figure
Potential and efficiency of statistical learning closely intertwined with individuals’ executive functions: A mathematical modeling study
Statistical learning (SL) is essential in enabling humans to extract probabilistic regularities from the world. The ability to accomplish ultimate learning performance with training (i.e., the potential of learning) has been known to be dissociated with performance improvement per amount of learning time (i.e., the efficiency of learning). Here, we quantified the potential and efficiency of SL separately through mathematical modeling and scrutinized how they were affected by various executive functions. Our results showed that a high potential of SL was associated with poor inhibition and good visuo-spatial working memory, whereas high efficiency of SL was closely related to good inhibition and good set-shifting. We unveiled the distinct characteristics of SL in relation to potential and efficiency and their interaction with executive functions
Recommended from our members
Perceptual image quality assessment for various viewing conditions and display systems
From complete darkness to direct sunlight, real-world dis-
plays operate in various viewing conditions often resulting in a
non-optimal viewing experience. Most existing Image Quality
Assessment (IQA) methods, however, assume ideal environments
and displays, and thus cannot be used when viewing conditions
differ from the standard. In this paper, we investigate the influence
of ambient illumination level and display luminance on human
perception of image quality. We conduct a psychophysical study
to collect a novel dataset of over 10000 image quality preference
judgments performed in illumination conditions ranging from 0 lux
to 20000 lux. We also propose a perceptual IQA framework that
allows most existing image quality metrics (IQM) to accurately
predict image quality for a wide range of illumination conditions
and display parameters 1 . Our analysis demonstrates strong cor-
relation between human IQA and the predictions of our proposed
framework combined with multiple prominent IQMs and across a
wide range of luminance values
- …