25,352 research outputs found
Quenching across quantum critical points: role of topological patterns
We introduce a one-dimensional version of the Kitaev model consisting of
spins on a two-legged ladder and characterized by Z_2 invariants on the
plaquettes of the ladder. We map the model to a fermionic system and identify
the topological sectors associated with different Z_2 patterns in terms of
fermion occupation numbers. Within these different sectors, we investigate the
effect of a linear quench across a quantum critical point. We study the
dominant behavior of the system by employing a Landau-Zener-type analysis of
the effective Hamiltonian in the low-energy subspace for which the effective
quenching can sometimes be non-linear. We show that the quenching leads to a
residual energy which scales as a power of the quenching rate, and that the
power depends on the topological sectors and their symmetry properties in a
non-trivial way. This behavior is consistent with the general theory of quantum
quenching, but with the correlation length exponent \nu being different in
different sectors.Comment: 5 pages including 2 figures; this is the published versio
Probabilistic teleportation of unknown two-particle state via POVM
We propose a scheme for probabilistic teleportation of unknown two-particle
state with partly entangled four-particle state via POVM. In this scheme the
teleportation of unknown two-particle state can be realized with certain
probability by performing two Bell state measurements, a proper POVM and a
unitary transformation.Comment: 5 pages, no figur
Dynamics of an inhomogeneous quantum phase transition
We argue that in a second order quantum phase transition driven by an
inhomogeneous quench density of quasiparticle excitations is suppressed when
velocity at which a critical point propagates across a system falls below a
threshold velocity equal to the Kibble-Zurek correlation length times the
energy gap at freeze-out divided by . This general prediction is
supported by an analytic solution in the quantum Ising chain. Our results
suggest, in particular, that adiabatic quantum computers can be made more
adiabatic when operated in an "inhomogeneous" way.Comment: 7 pages; version to appear in a special issue of New J. Phy
Adiabatic dynamics of an inhomogeneous quantum phase transition: the case of z > 1 dynamical exponent
We consider an inhomogeneous quantum phase transition across a multicritical
point of the XY quantum spin chain. This is an example of a Lifshitz transition
with a dynamical exponent z = 2. Just like in the case z = 1 considered in New
J. Phys. 12, 055007 (2010) when a critical front propagates much faster than
the maximal group velocity of quasiparticles vq, then the transition is
effectively homogeneous: density of excitations obeys a generalized
Kibble-Zurek mechanism and scales with the sixth root of the transition rate.
However, unlike for z = 1, the inhomogeneous transition becomes adiabatic not
below vq but a lower threshold velocity v', proportional to inhomogeneity of
the transition, where the excitations are suppressed exponentially.
Interestingly, the adiabatic threshold v' is nonzero despite vanishing minimal
group velocity of low energy quasiparticles. In the adiabatic regime below v'
the inhomogeneous transition can be used for efficient adiabatic quantum state
preparation in a quantum simulator: the time required for the critical front to
sweep across a chain of N spins adiabatically is merely linear in N, while the
corresponding time for a homogeneous transition across the multicritical point
scales with the sixth power of N. What is more, excitations after the adiabatic
inhomogeneous transition, if any, are brushed away by the critical front to the
end of the spin chain.Comment: 10 pages, 6 figures, improved version accepted in NJ
Quench dynamics of topological quantum phase transition in Wen-plaquette model
We study the quench dynamics of the topological quantum phase transition in
the two-dimensional transverse Wen-plaquette model, which has a phase
transition from a Z2 topologically ordered to a spin-polarized state. By
mapping the Wen-plaquette model onto a one-dimensional quantum Ising model, we
calculate the expectation value of the plaquette operator Fi during a slowly
quenching process from a topologically ordered state. A logarithmic scaling law
of quench dynamics near the quantum phase transition is found, which is
analogous to the well-known static critical behavior of the specific heat in
the one-dimensional quantum Ising model.Comment: 8 pages, 5 figures,add new conten
The oxygen abundance calibrations and N/O abundance ratios of ~40,000 SDSS star-forming galaxies
Using a large sample of 38,478 star-forming galaxies selected from the Second
Data Release of the Sloan Digital Sky Survey database (SDSS-DR2), we derive
analytical calibrations for oxygen abundances from several
metallicity-sensitive emission-line ratios: [N II]/H_alpha, [O III]/[N II], [N
II]/[O II], [N II]/[S II], [S II]/H_alpha, and [O III]/H_beta. This consistent
set of strong-line oxygen abundance calibrations will be useful for future
abundance studies. Among these calibrations, [N II]/[O II] is the best for
metal-rich galaxies due to its independence on ionization parameter and low
scatter. Dust extinction must be considered properly at first. These
calibrations are more suitable for metal-rich galaxies (8.4<12+log(O/H)<9.3),
and for the nuclear regions of galaxies. The observed relations are consistent
with those expected from the photoionization models of Kewley & Dopita (2002).
However, most of the observational data spread in a range of ionization
parameter q from 1*10^7 to 8*10^7 cm s^{-1}, corresponding to logU= -3.5 to
-2.5, narrower than that suggested by the models. We also estimate the (N/O)
abundance ratios of this large sample of galaxies, and these are consistent
with the combination of a "primary" and a dominant "secondary" components of
nitrogen.Comment: 17 pages, 10 figures, 1 table. ApJ in pres
Efficient electronic entanglement concentration assisted with single mobile electron
We present an efficient entanglement concentration protocol (ECP) for mobile
electrons with charge detection. This protocol is quite different from other
ECPs for one can obtain a maximally entangled pair from a pair of
less-entangled state and a single mobile electron with a certain probability.
With the help of charge detection, it can be repeated to reach a higher success
probability. It also does not need to know the coefficient of the original
less-entangled states. All these advantages may make this protocol useful in
current distributed quantum information processing.Comment: 6pages, 3figure
Switching Mechanism in Single-Layer Molybdenum Disulfide Transistors: an Insight into Current Flow across Schottky Barriers
In this article, we study the properties of metal contacts to single-layer
molybdenum disulfide (MoS2) crystals, revealing the nature of switching
mechanism in MoS2 transistors. On investigating transistor behavior as contact
length changes, we find that the contact resistivity for metal/MoS2 junctions
is defined by contact area instead of contact width. The minimum gate dependent
transfer length is ~0.63 {\mu}m in the on-state for metal (Ti) contacted
single-layer MoS2. These results reveal that MoS2 transistors are Schottky
barrier transistors, where the on/off states are switched by the tuning the
Schottky barriers at contacts. The effective barrier heights for source and
drain barriers are primarily controlled by gate and drain biases, respectively.
We discuss the drain induced barrier narrowing effect for short channel
devices, which may reduce the influence of large contact resistance for MoS2
Schottky barrier transistors at the channel length scaling limit.Comment: ACS Nano, ASAP (2013
- …
