12,946 research outputs found

    Topological Phases in Neuberger-Dirac operator

    Full text link
    The response of the Neuberger-Dirac fermion operator D=\Id + V in the topologically nontrivial background gauge field depends on the negative mass parameter m0m_0 in the Wilson-Dirac fermion operator DwD_w which enters DD through the unitary operator V=Dw(Dw†Dw)−1/2V = D_w (D_w^{\dagger} D_w)^{-1/2}. We classify the topological phases of DD by comparing its index to the topological charge of the smooth background gauge field. An exact discrete symmetry in the topological phase diagram is proved for any gauge configurations. A formula for the index of D in each topological phase is derived by obtaining the total chiral charge of the zero modes in the exact solution of the free fermion propagator.Comment: 27 pages, Latex, 3 figures, appendix A has been revise

    Flavor Mixing and the Permutation Symmetry among Generations

    Full text link
    In the standard model, the permutation symmetry among the three generations of fundamental fermions is usually regarded to be broken by the Higgs couplings. It is found that the symmetry is restored if we include the mass matrix parameters as physical variables which transform appropriately under the symmetry operation. Known relations between these variables, such as the renormalization group equations, as well as formulas for neutrino oscillations (in vacuum and in matter), are shown to be covariant tensor equations under the permutation symmetry group.Comment: 12 page

    Rephasing invariance and neutrino mixing

    Full text link
    A rephasing invariant parametrization is introduced for three flavor neutrino mixing. For neutrino propagation in matter, these parameters are shown to obey evolution equations as functions of the induced neutrino mass. These equations are found to preserve (approximately) some characteristic features of the mixing matrix, resulting in solutions which exhibit striking patterns as the induced mass varies. The approximate solutions are compared to numerical integrations and found to be quite accurate.Comment: 18 pages, 6 figure

    Renormalization of the Neutrino Mass Matrix

    Get PDF
    In terms of a rephasing invariant parametrization, the set of renormalization group equations (RGE) for Dirac neutrino parameters can be cast in a compact and simple form. These equations exhibit manifest symmetry under flavor permutations. We obtain both exact and approximate RGE invariants, in addition to some approximate solutions and examples of numerical solutions.Comment: 15 pages, 1figur

    Properties of the Neutrino Mixing Matrix

    Full text link
    For neutrino mixing we propose to use the parameter set XiX_{i} (=∣Vei∣2)(=|V_{ei}|^{2}) and Ωi\Omega_{i} (=ϵijk∣Vμj∣2∣Vτk∣2)(=\epsilon_{ijk}|V_{\mu j}|^{2}|V_{\tau k}|^{2}), with two constraints. These parameters are directly measurable since the neutrino oscillation probabilities are quadratic functions of them. Physically, the set Ωi\Omega_{i} signifies a quantitative measure of μ−τ\mu-\tau asymmetry. Available neutrino data indicate that all the Ωi\Omega_{i}'s are small (≲O(10−1))(\lesssim O(10^{-1})), but with large uncertainties. The behavior of Ωi\Omega_{i} as functions of the induced neutrino mass in matter are found to be simple, which should facilitate the analyses of long baseline experiments.Comment: 14 pages, 5 figure

    Solutions of the Ginsparg-Wilson Relation

    Get PDF
    We analyze general solutions of the Ginsparg-Wilson relation for lattice Dirac operators and formulate a necessary condition for such operators to have non-zero index in the topologically nontrivial background gauge fields.Comment: 6 pages, latex, no figures, set T to 1 in eqs. (10)--(13

    The Lattice Free Energy with Overlap Fermions: A Two-Loop Result

    Full text link
    We calculate the 2-loop partition function of QCD on the lattice, using the Wilson formulation for gluons and the overlap-Dirac operator for fermions. Direct by-products of our result are the 2-loop free energy and average plaquette. Our calculation serves also as a prototype for further higher loop calculations in the overlap formalism. We present our results as a function of a free parameter M0M_0 entering the overlap action; the dependence on the number of colors NN and fermionic flavors NfN_f is shown explicitly.Comment: 10 pages, 5 figures. Final version to appear in Physical Review D. A missing overall factor was inserted in Eq. 12; it affects also Eq. 1
    • …
    corecore