42,789 research outputs found

    Approaching the quantum critical point in a highly-correlated all-in-all-out antiferromagnet

    Get PDF
    Continuous quantum phase transition involving all-in–all-out (AIAO) antiferromagnetic order in strongly spin-orbit-coupled 5d compounds could give rise to various exotic electronic phases and strongly-coupled quantum critical phenomena. Here we experimentally trace the AIAO spin order in Sm₂Ir₂O₇ using direct resonant x-ray magnetic diffraction techniques under high pressure. The magnetic order is suppressed at a critical pressure P_c=6.30GPa, while the lattice symmetry remains in the cubic Fd−3m space group across the quantum critical point. Comparing pressure tuning and the chemical series R₂Ir₂O₇ reveals that the approach to the AIAO quantum phase transition is characterized by contrasting evolutions of the pyrochlore lattice constant a and the trigonal distortion surrounding individual Ir moments, which affects the 5d bandwidth and the Ising anisotropy, respectively. We posit that the opposite effects of pressure and chemical tuning lead to spin fluctuations with different Ising and Heisenberg character in the quantum critical region. Finally, the observed low pressure scale of the AIAO quantum phase transition in Sm₂Ir₂O₇ identifies a circumscribed region of P-T space for investigating the putative magnetic Weyl semimetal state

    Heavy fermions and two loop electroweak corrections to b→s+γb\rightarrow s+\gamma

    Full text link
    Applying effective Lagrangian method and on-shell scheme, we analyze the electroweak corrections to the rare decay b→s+γb\rightarrow s+\gamma from some special two loop diagrams in which a closed heavy fermion loop is attached to the virtual charged gauge bosons or Higgs. At the decoupling limit where the virtual fermions in inner loop are much heavier than the electroweak scale, we verify the final results satisfying the decoupling theorem explicitly when the interactions among Higgs and heavy fermions do not contain the nondecoupling couplings. Adopting the universal assumptions on the relevant couplings and mass spectrum of new physics, we find that the relative corrections from those two loop diagrams to the SM theoretical prediction on the branching ratio of B→XsγB\rightarrow X_{_s}\gamma can reach 5% as the energy scale of new physics ΛNP=200\Lambda_{_{\rm NP}}=200 GeV.Comment: 30 pages,4 figure

    On the tau-functions of the Degasperis-Procesi equation

    Full text link
    The DP equation is investigated from the point of view of determinant-pfaffian identities. The reciprocal link between the Degasperis-Procesi (DP) equation and the pseudo 3-reduction of the C∞C_{\infty} two-dimensional Toda system is used to construct the N-soliton solution of the DP equation. The N-soliton solution of the DP equation is presented in the form of pfaffian through a hodograph (reciprocal) transformation. The bilinear equations, the identities between determinants and pfaffians, and the τ\tau-functions of the DP equation are obtained from the pseudo 3-reduction of the C∞C_{\infty} two-dimensional Toda system.Comment: 27 pages, 4 figures, Journal of Physics A: Mathematical and Theoretical, to be publishe

    Magnetism, structure, and charge correlation at a pressure-induced Mott-Hubbard insulator-metal transition

    Get PDF
    We use synchrotron x-ray diffraction and electrical transport under pressure to probe both the magnetism and the structure of single crystal NiS2 across its Mott-Hubbard transition. In the insulator, the low-temperature antiferromagnetic order results from superexchange among correlated electrons and couples to a (1/2, 1/2, 1/2) superlattice distortion. Applying pressure suppresses the insulating state, but enhances the magnetism as the superexchange increases with decreasing lattice constant. By comparing our results under pressure to previous studies of doped crystals we show that this dependence of the magnetism on the lattice constant is consistent for both band broadening and band filling. In the high pressure metallic phase the lattice symmetry is reduced from cubic to monoclinic, pointing to the primary influence of charge correlations at the transition. There exists a wide regime of phase separation that may be a general characteristic of correlated quantum matter.Comment: 5 pages, 3 figure

    TeV Scale Lee-Wick Fields out of Large Extra Dimensional Gravity

    Full text link
    We study the gravitational corrections to the Maxwell, Dirac and Klein-Gorden theories in the large extra dimension model in which the gravitons propagate in the (4+n)-dimensional bulk, while the gauge and matter fields are confined to the four-dimensional world. The corrections to the two-point Green's functions of the gauge and matter fields from the exchanges of virtual Kaluza-Klein gravitons are calculated in the gauge independent background field method. In the framework of effective field theory, we show that the modified one-loop renormalizable Lagrangian due to quantum gravitational effects contains a TeV scale Lee-Wick partner of every gauge and matter field as extra degrees of freedom in the theory. Thus the large extra dimension model of gravity provides a natural mechanism to the emergence of these exotic particles which were recently used to construct an extension of the Standard Model.Comment: 17 pages, 3 figures, references added, to appear in Phys. Rev.
    • …
    corecore