87,899 research outputs found

    Finite-size scaling in complex networks

    Full text link
    A finite-size-scaling (FSS) theory is proposed for various models in complex networks. In particular, we focus on the FSS exponent, which plays a crucial role in analyzing numerical data for finite-size systems. Based on the droplet-excitation (hyperscaling) argument, we conjecture the values of the FSS exponents for the Ising model, the susceptible-infected-susceptible model, and the contact process, all of which are confirmed reasonably well in numerical simulations

    Epitaxial Growth of an n-type Ferromagnetic Semiconductor CdCr2Se4 on GaAs(001) and GaP(001)

    Full text link
    We report the epitaxial growth of CdCr2Se4, an n-type ferromagnetic semiconductor, on both GaAs and GaP(001) substrates, and describe the structural, magnetic and electronic properties. Magnetometry data confirm ferromagnetic order with a Curie temperature of 130 K, as in the bulk material. The magnetization exhibits hysteretic behavior with significant remanence, and an in-plane easy axis with a coercive field of ~125 Oe. Temperature dependent transport data show that the films are semiconducting in character and n-type as grown, with room temperature carrier concentrations of n ~ 1 x 10^18 cm-3.Comment: 12 pages, 3 figure

    On Minimum Violations Ranking in Paired Comparisons

    Full text link
    Ranking a set of objects from the most dominant one to the least, based on the results of paired comparisons, proves to be useful in many contexts. Using the rankings of teams or individuals players in sports to seed tournaments is an example. The quality of a ranking is often evaluated by the number of violations, cases in which an object is ranked lower than another that it has dominated in a comparison, that it contains. A minimum violations ranking (MVR) method, as its name suggests, searches specifically for rankings that have the minimum possible number of violations which may or may not be zero. In this paper, we present a method based on statistical physics that overcomes conceptual and practical difficulties faced by earlier studies of the problem.Comment: 10 pages, 10 figures; typos corrected (v2

    Synthesis and Spectroscopic Characterization of High-Spin Mononuclear Iron(II) \u3cem\u3ep\u3c/em\u3e-Semiquinonate Complexes

    Get PDF
    Two mononuclear iron(II) p-semiquinonate (pSQ) complexes have been generated via one-electron reduction of precursor complexes containing a substituted 1,4-naphthoquinone ligand. Detailed spectroscopic and computational analysis confirmed the presence of a coordinated pSQ radical ferromagnetically coupled to the high-spin FeII center. The complexes are intended to model electronic interactions between (semi)quinone and iron cofactors in biology

    Probing resonance decays to two visible and multiple invisible particles

    Full text link
    We consider the decay of a generic resonance to two visible particles and any number of invisible particles. We show that the shape of the invariant mass distribution of the two visible particles is sensitive to both the mass spectrum of the new particles, as well as the decay topology. We provide the analytical formulas describing the invariant mass shapes for the nine simplest topologies (with up to two invisible particles in the final state). Any such distribution can be simply categorized by its endpoint, peak location and curvature, which are typically sufficient to discriminate among the competing topologies. In each case, we list the effective mass parameters which can be measured by experiment. In certain cases, the invariant mass shape is sufficient to completely determine the new particle mass spectrum, including the overall mass scale.Comment: Added new figures, conclusions unchanged, published versio

    Horava Gravity and Gravitons at a Conformal Point

    Full text link
    Recently Horava proposed a renormalizable gravity theory with higher derivatives by abandoning the Lorenz invariance in UV. Here, I study the Horava model at λ=1/3\lambda=1/3, where an anisotropic Weyl symmetry exists in the UV limit, in addition to the foliation-preserving diffeomorphism. By considering linear perturbations around Minkowski vacuum, I show that the scalar graviton mode is completely disappeared and only the usual tensor graviton modes remain in the physical spectrum. The existence of the UV conformal symmetry is unique to the theory with the detailed balance and it is quite probable that λ=1/3\lambda=1/3 be the UV fixed point. This situation is analogous to λ=1\lambda=1, which is Lorentz invariant in the IR limit and is believed to be the IR fixed point.Comment: Added comments and references, Accepted in GER

    Structural, Spectroscopic, and Electrochemical Properties of Nonheme Fe(II)-Hydroquinonate Complexes: Synthetic Models of Hydroquinone Dioxygenases

    Get PDF
    Using the tris(3,5-diphenylpyrazol-1-yl)borate (Ph2Tp) supporting ligand, a series of mono- and dinuclear ferrous complexes containing hydroquinonate (HQate) ligands have been prepared and structurally characterized with X-ray crystallography. The monoiron(II) complexes serve as faithful mimics of the substrate-bound form of hydroquinone dioxygenases (HQDOs) – a family of nonheme Fe enzymes that catalyze the oxidative cleavage of 1,4-dihydroxybenzene units. Reflecting the variety of HQDO substrates, the synthetic complexes feature both mono- and bidentate HQate ligands. The bidentate HQates cleanly provide five-coordinate, high-spin Fe(II) complexes with the general formula [Fe(Ph2Tp)(HLX)] (1X), where HLX is a HQate(1-) ligand substituted at the 2-position with a benzimidazolyl (1A), acetyl (1B and 1C), or methoxy (1D) group. In contrast, the monodentate ligand 2,6-dimethylhydroquinone (H2LF) exhibited a greater tendency to bridge between two Fe(II) centers, resulting in formation of [Fe2(Ph2Tp)2(μ-LF)(MeCN)]·[2F(MeCN)]. However, addition of one equivalent of “free” pyrazole (Ph2pz) ligand provided the mononuclear complex, [Fe(Ph2Tp)(HLF)(Ph2pz)]·[1F(Ph2pz)], which is stabilized by an intramolecular hydrogen bond between the HLF and Ph2pz donors. Complex 1F(Ph2pz) represents the first crystallographically-characterized example of a monoiron complex bound to an untethered HQate ligand. The geometric and electronic structures of the Fe/HQate complexes were further probed with spectroscopic (UV-vis absorption, 1H NMR) and electrochemical methods. Cyclic voltammograms of complexes in the 1X series revealed an Fe-based oxidation between 0 and −300 mV (vs. Fc+/0), in addition to irreversible oxidation(s) of the HQate ligand at higher potentials. The one-electron oxidized species (1Xoxox) were examined with UV-vis absorption and electron paramagnetic resonance (EPR) spectroscopies

    The statistical mechanics of networks

    Full text link
    We study the family of network models derived by requiring the expected properties of a graph ensemble to match a given set of measurements of a real-world network, while maximizing the entropy of the ensemble. Models of this type play the same role in the study of networks as is played by the Boltzmann distribution in classical statistical mechanics; they offer the best prediction of network properties subject to the constraints imposed by a given set of observations. We give exact solutions of models within this class that incorporate arbitrary degree distributions and arbitrary but independent edge probabilities. We also discuss some more complex examples with correlated edges that can be solved approximately or exactly by adapting various familiar methods, including mean-field theory, perturbation theory, and saddle-point expansions.Comment: 15 pages, 4 figure

    Cooperative ordering of gapped and gapless spin networks in Cu2_2Fe2_2Ge4_4O13_{13}

    Full text link
    The unusual magnetic properties of a novel low-dimensional quantum ferrimagnet Cu2_2Fe2_2Ge4_4O13_{13} are studied using bulk methods, neutron diffraction and inelastic neutron scattering. It is shown that this material can be described in terms of two low-dimensional quantum spin subsystems, one gapped and the other gapless, characterized by two distinct energy scales. Long-range magnetic ordering observed at low temperatures is a cooperative phenomenon caused by weak coupling of these two spin networks.Comment: 4 pages, 4 figure
    corecore