69,852 research outputs found

    Optimal Alphabetic Ternary Trees

    Full text link
    We give a new algorithm to construct optimal alphabetic ternary trees, where every internal node has at most three children. This algorithm generalizes the classic Hu-Tucker algorithm, though the overall computational complexity has yet to be determined

    Stray field and superconducting surface spin valve effect in La0.7_{0.7}Ca0.3_{0.3}MnO3_3/YBa2_2Cu3_3O7−δ_{7-\delta} bilayers

    Full text link
    Electronic transport and magnetization measurements were performed on La0.7_{0.7}Ca0.3_{0.3}MnO3_3/YBa2_2Cu3_3O7−δ_{7-\delta} (LCMO/YBCO) bilayers below the superconducting transition temperature in order to study the interaction between magnetism and superconductivity. This study shows that a substantial number of weakly pinned vortices are induced in the YBCO layer by the large out-of-plane stray field in the domain walls. Their motion gives rise to large dissipation peaks at the coercive field. The angular dependent magnetoresistance (MR) data reveal the interaction between the stripe domain structure present in the LCMO layer and the vortices and anti-vortices induced in the YBCO layer by the out-of-plane stray field. In addition, this study shows that a superconducting surface spin valve effect is present in these bilayers as a result of the relative orientation between the magnetization at the LCMO/YBCO interface and the magnetization in the interior of the LCMO layer that can be tuned by the rotation of a small HH. This latter finding will facilitate the development of superconductive magnetoresistive memory devices. These low-magnetic field MR data, furthermore, suggest that triplet superconductivity is induced in the LCMO layer, which is consistent with recent reports of triplet superconductivity in LCMO/YBCO/LCMO trilayers and LCMO/YBCO bilayers.Comment: 14 pages, 3 figure

    Strong magnetic fluctuations in superconducting state of CeCoIn5_5

    Full text link
    We show results on the vortex core dissipation through current-voltage measurements under applied pressure and magnetic field in the superconducting phase of CeCoIn5_5. We find that as soon as the system becomes superconducting, the vortex core resistivity increases sharply as the temperature and magnetic field decrease. The sharp increase in flux flow resistivity is due to quasiparticle scattering on critical antiferromagnetic fluctuations. The strength of magnetic fluctuations below the superconducting transition suggests that magnetism is complimentary to superconductivity and therefore must be considered in order to fully account for the low-temperature properties of CeCoIn5_5.Comment: 7 pages, 6 figure

    Scaling Behavior of Angular Dependent Resistivity in CeCoIn5_5: Possible Evidence for d-Wave Density Waves

    Full text link
    In-plane angular dependent resistivity ADR was measured in the non-Fermi liquid regime of CeCoIn5_5 single crystals at temperatures T≤20T \le 20 K and in magnetic fields HH up to 14 T. Two scaling behaviors were identified in low field region where resistivity shows T-linear dependence, separated by a critical angle θc\theta_{c} which is determined by the anisotropy of CeCoIn5_5; i.e., ADR depends only on the perpendicular (parallel) field component below (above) θc\theta_c. These scaling behaviors and other salient features of ADR are consistent with d-wave density waves

    Binding-incompetent adenovirus facilitates molecular conjugate-mediated gene transfer by the receptor-mediated endocytosis pathway

    Get PDF
    Molecular conjugate vectors may be constructed that accomplish high efficiency gene transfer by the receptor-mediated endocytosis pathway. In order to mediate escape from lysosomal degradation, we have incorporated adenoviruses into the functional design of the conjugate. In doing so, however, we have introduced an additional ligand, which can bind to receptors on the cell surface, undermining the potential for cell specific targeting. To overcome this, we have treated the adenovirus with a monoclonal anti-fiber antibody, which renders the virus incapable of binding to its receptor. The result is a multi-functional molecular conjugate vector, which has preserved its binding specificity while at the same time being capable of preventing lysosomal degradation of endosome-internalized conjugate-DNA complexes. This finding indicates that adenoviral binding is not a prerequisite for adenoviral-mediated endosome disruption

    Quantized Dispersion of Two-Dimensional Magnetoplasmons Detected by Photoconductivity Spectroscopy

    Full text link
    We find that the long-wavelength magnetoplasmon, resistively detected by photoconductivity spectroscopy in high-mobility two-dimensional electron systems, deviates from its well-known semiclassical nature as uncovered in conventional absorption experiments. A clear filling-factor dependent plateau-type dispersion is observed that reveals a so far unknown relation between the magnetoplasmon and the quantum Hall effect.Comment: 5 pages, 3 figure
    • …
    corecore