28,311 research outputs found

    On Optimal Service Differentiation in Congested Network Markets

    Full text link
    As Internet applications have become more diverse in recent years, users having heavy demand for online video services are more willing to pay higher prices for better services than light users that mainly use e-mails and instant messages. This encourages the Internet Service Providers (ISPs) to explore service differentiations so as to optimize their profits and allocation of network resources. Much prior work has focused on the viability of network service differentiation by comparing with the case of a single-class service. However, the optimal service differentiation for an ISP subject to resource constraints has remained unsolved. In this work, we establish an optimal control framework to derive the analytical solution to an ISP's optimal service differentiation, i.e. the optimal service qualities and associated prices. By analyzing the structures of the solution, we reveal how an ISP should adjust the service qualities and prices in order to meet varying capacity constraints and users' characteristics. We also obtain the conditions under which ISPs have strong incentives to implement service differentiation and whether regulators should encourage such practices

    Nucleon Resonances with Hidden Charm in Coupled-Channel Models

    Full text link
    The model dependence of the predictions of nucleon resonances with hidden charm is investigated. We consider several coupled-channel models which are derived from relativistic quantum field theory by using (1) a unitary transformation method, and (2) the three-dimensional reductions of Bethe-Salpeter Equation. With the same vector meson exchange mechanism, we find that all models give very narrow molecular-like nucleon resonances with hidden charm in the mass range of 4.3 GeV <MR< < M_R < 4.5 GeV, in consistent with the previous predictions.Comment: 17 pages, 3 figure

    Dynamical coupled-channel approach to hadronic and electromagnetic production of kaon-hyperon on the proton

    Full text link
    A dynamical coupled-channel formalism for processes πNKY\pi N \to KY and γNKY\gamma N \to KY is presented which provides a comprehensive investigation of recent data on the γpK+Λ\gamma p \to K^+ \Lambda reaction. The non-resonant interactions within the subspace KYπNKY\oplus\pi N are derived from effective Lagrangians, using a unitary transformation method. The calculations of photoproduction amplitudes are simplified by casting the coupled-channel equations into a form such that the empirical γNπN\gamma N \to \pi N amplitudes are input and only the parameters associated with the KYKY channel are determined by performing χ2\chi^2-fits to all of the available data for πpKΛ,KΣ\pi^- p \to K^\circ\Lambda, K^\circ\Sigma^\circ and γpK+Λ\gamma p \to K^+\Lambda. Good agreement between our models and those data are obtained. In the fits to πNKY\pi N \to KY channels, most of the parameters are constrained within ±20\pm 20% of the values given by the Particle Data Group and/or quark model predictions, while for γpK+Λ\gamma p \to K^+ \Lambda parameters, ranges compatible with broken SU(6)O(3)SU(6)\otimes O(3) symmetry are imposed. The main reaction mechanisms in K+ΛK^+ \Lambda photoproduction are singled out and issues related to newly suggested resonances S11S_{11}, P13P_{13}, and D13D_{13} are studied. Results illustrating the importance of using a coupled-channel treatment are reported. Meson cloud effects on the γNN\gamma N \to N^* transitions are also discussed.Comment: Accepted Physical Review

    Charmless BPV,VVB \to PV, VV decays and new physics effects in the mSUGRA model

    Full text link
    By employing the QCD factorization approach, we calculate the new physics contributions to the branching radios of the two-body charmless BPV B \to PV and BVVB \to VV decays in the framework of the minimal supergravity (mSUGRA) model. we choose three typical sets of the mSUGRA input parameters in which the Wilson coefficient C7γ(mb)C_{7\gamma}(m_b) can be either SM-like (the case A and C) or has a flipped-sign (the case B). We found numerically that (a) the SUSY contributions are always very small for both case A and C; (b) for those tree-dominated decays, the SUSY contributions in case B are also very small; (c) for those QCD penguin-dominated decay modes, the SUSY contributions in case B can be significant, and can provide an enhancement about 3030% \sim 260% to the branching ratios of BK(π,ϕ,ρ)B \to K^*(\pi,\phi,\rho) and KϕK \phi decays, but a reduction about 3030% \sim 80% to BK(ρ,ω) B\to K(\rho, \omega) decays; and (d) the large SUSY contributions in the case B may be masked by the large theoretical errors dominated by the uncertainty from our ignorance of calculating the annihilation contributions in the QCD factorization approach.Comment: 34 pages, 8 PS figures, this is the correct version

    Elastic-Net Regularization: Error estimates and Active Set Methods

    Full text link
    This paper investigates theoretical properties and efficient numerical algorithms for the so-called elastic-net regularization originating from statistics, which enforces simultaneously l^1 and l^2 regularization. The stability of the minimizer and its consistency are studied, and convergence rates for both a priori and a posteriori parameter choice rules are established. Two iterative numerical algorithms of active set type are proposed, and their convergence properties are discussed. Numerical results are presented to illustrate the features of the functional and algorithms

    Anharmonic effect on lattice distortion, orbital ordering and magnetic properties in Cs2AgF4

    Full text link
    We develop the cluster self-consistent field method incorporating both electronic and lattice degrees of freedom to study the origin of ferromagnetism in Cs2_{2}AgF4_{4}. After self-consistently determining the harmonic and anharmonic Jahn-Teller distortions, we show that the anharmonic distortion stabilizes the staggered x2^{2}-z2^{2}/y2^{2}-z2^{2} orbital and ferromagnetic ground state, rather than the antiferromagnetic one. The amplitudes of lattice distortions, Q2_{2} and Q3_{3}, the magnetic coupling strengthes, Jx,y_{x,y}, and the magnetic moment, are in good agreement with the experimental observation.Comment: 13 pages, 5 figure

    Effect of Level Statistics on Local Magnetism in Nanoscale Metallic Grains

    Full text link
    Effect of level statistics on local electronic states and local magnetism in nanoscale metallic grains with transition-metal impurity in the ballistic regime is studied. It is shown that the mean occupation of local electron and the local magnetic moment in nanoscale metallic grains with odd conduction electrons are larger than those with even conduction electrons. The effect of even-odd parity on the condition for the occurrence of local magnetic moment is also discussed, it is found that the critical value ρd(0)Uc\rho_{d}(0)U_{c} for the formation of local moment in nanoscale metallic grains is much smaller than that in bulks. The dependences of the local spin susceptibility on size and the Coulomb interaction are obtained. These results show that the level statistics plays an important role for the local magnetism, it distinguishes the properties of nanoscale metallic grains from those of small clusters and bulks.Comment: Latex, 6 figures in Postscrip
    corecore