6,621 research outputs found
Solar energetic particle access to distant longitudes through turbulent field-line meandering
Context. Current solar energetic particle (SEP) propagation models describe the effects of interplanetary plasma turbulence on SEPs as diffusion, using a Fokker-Planck (FP) equation. However, FP models cannot explain the observed fast access of SEPs across the average magnetic field to regions that are widely separated in longitude within the heliosphere without using unrealistically strong cross-field diffusion.
Aims. We study whether the recently suggested early non-diffusive phase of SEP propagation can explain the wide SEP events with realistic particle transport parameters.
Methods. We used a novel model that accounts for the SEP propagation along field lines that meander as a result of plasma turbulence. Such a non-diffusive propagation mode has been shown to dominate the SEP cross-field propagation early in the SEP event history. We compare the new model to the traditional approach, and to SEP observations.
Results. Using the new model, we reproduce the observed longitudinal extent of SEP peak fluxes that are characterised by a Gaussian profile with σ = 30 − 50◦ , while current diffusion theory can only explain extents of 11◦ with realistic diffusion coefficients. Our model also reproduces the timing of SEP arrival at distant longitudes, which cannot be explained using the diffusion model.
Conclusions. The early onset of SEPs over a wide range of longitudes can be understood as a result of the effects of magnetic fieldline random walk in the interplanetary medium and requires an SEP transport model that properly describes the non-diffusive early phase of SEP cross-field propagation
HUWE1 E3 ligase promotes PINK1/PARKINindependent mitophagy by regulating AMBRA1 activation via IKKa
The selective removal of undesired or damaged mitochondria by autophagy, known as mitophagy, is crucial for cellular homoeostasis, and prevents tumour diffusion, neurodegeneration and ageing. The pro-autophagic molecule AMBRA1 (autophagy/beclin-1 regulator-1) has been defined as a novel regulator of mitophagy in both PINK1/PARKIN-dependent and -independent systems. Here, we identified the E3 ubiquitin ligase HUWE1 as a key inducing factor in AMBRA1-mediated mitophagy, a process that takes place independently of the main mitophagy receptors. Furthermore, we show that mitophagy function of AMBRA1 is post-translationally controlled, upon HUWE1 activity, by a positive phosphorylation on its serine 1014. This modification is mediated by the IKKα kinase and induces structural changes in AMBRA1, thus promoting its interaction with LC3/GABARAP (mATG8) proteins and its mitophagic activity. Altogether, these results demonstrate that AMBRA1 regulates mitophagy through a novel pathway, in which HUWE1 and IKKα are key factors, shedding new lights on the regulation of mitochondrial quality control and homoeostasis in mammalian cells
Belle II Technical Design Report
The Belle detector at the KEKB electron-positron collider has collected
almost 1 billion Y(4S) events in its decade of operation. Super-KEKB, an
upgrade of KEKB is under construction, to increase the luminosity by two orders
of magnitude during a three-year shutdown, with an ultimate goal of 8E35 /cm^2
/s luminosity. To exploit the increased luminosity, an upgrade of the Belle
detector has been proposed. A new international collaboration Belle-II, is
being formed. The Technical Design Report presents physics motivation, basic
methods of the accelerator upgrade, as well as key improvements of the
detector.Comment: Edited by: Z. Dole\v{z}al and S. Un
Observation and study of the decay
We report the observation and study of the decay
using events
collected with the BESIII detector. Its branching fraction, including all
possible intermediate states, is measured to be
. We also report evidence for a structure,
denoted as , in the mass spectrum in the GeV/
region. Using two decay modes of the meson ( and
), a simultaneous fit to the mass spectra is
performed. Assuming the quantum numbers of the to be , its
significance is found to be 4.4, with a mass and width of MeV/ and MeV, respectively, and a
product branching fraction
. Alternatively, assuming , the
significance is 3.8, with a mass and width of MeV/ and MeV, respectively, and a product
branching fraction
. The angular distribution of
is studied and the two assumptions of the
cannot be clearly distinguished due to the limited statistics. In all
measurements the first uncertainties are statistical and the second systematic.Comment: 10 pages, 6 figures and 4 table
Observation of and confirmation of its large branching fraction
The baryonic decay is observed, and the
corresponding branching fraction is measured to be
, where the first uncertainty is statistical
and second systematic. The data sample used in this analysis was collected with
the BESIII detector operating at the BEPCII double-ring collider with
a center-of-mass energy of 4.178~GeV and an integrated luminosity of
3.19~fb. The result confirms the previous measurement by the CLEO
Collaboration and is of greatly improved precision, which may deepen our
understanding of the dynamical enhancement of the W-annihilation topology in
the charmed meson decays
High-precision Studies of the He(e,ep) Reaction at the Quasielastic Peak
Precision studies of the reaction He(e,ep) using the
three-spectrometer facility at the Mainz microtron MAMI are presented. All data
are for quasielastic kinematics at MeV/c. Absolute cross
sections were measured at three electron kinematics. For the measured missing
momenta range from 10 to 165 MeV/c, no strength is observed for missing
energies higher than 20 MeV. Distorted momentum distributions were extracted
for the two-body breakup and the continuum. The longitudinal and transverse
behavior was studied by measuring the cross section for three photon
polarizations. The longitudinal and transverse nature of the cross sections is
well described by a currently accepted and widely used prescription of the
off-shell electron-nucleon cross-section. The results are compared to modern
three-body calculations and to previous data.Comment: 4 pages, 3 figures. Submitted for publication in Phys. Rev. Let
Measurement of proton electromagnetic form factors in in the energy region 2.00-3.08 GeV
The process of is studied at 22 center-of-mass
energy points () from 2.00 to 3.08 GeV, exploiting 688.5~pb of
data collected with the BESIII detector operating at the BEPCII collider. The
Born cross section~() of is
measured with the energy-scan technique and it is found to be consistent with
previously published data, but with much improved accuracy. In addition, the
electromagnetic form-factor ratio () and the value of the
effective (), electric () and magnetic () form
factors are measured by studying the helicity angle of the proton at 16
center-of-mass energy points. and are determined with
high accuracy, providing uncertainties comparable to data in the space-like
region, and is measured for the first time. We reach unprecedented
accuracy, and precision results in the time-like region provide information to
improve our understanding of the proton inner structure and to test theoretical
models which depend on non-perturbative Quantum Chromodynamics
First observations of hadrons
Based on events collected with
the BESIII detector, five hadronic decays are searched for via process
. Three of them, ,
, and are observed for the first
time, with statistical significances of 7.4, , and
9.1, and branching fractions of ,
, and ,
respectively, where the first uncertainties are statistical and the second
systematic. No significant signal is observed for the other two decay modes,
and the corresponding upper limits of the branching fractions are determined to
be and at 90% confidence level.Comment: 17 pages, 16 figure
Observation of in
Using a sample of events recorded with
the BESIII detector at the symmetric electron positron collider BEPCII, we
report the observation of the decay of the charmonium state
into a pair of mesons in the process
. The branching fraction is measured for the first
time to be , where the first uncertainty is
statistical, the second systematic and the third is from the uncertainty of
. The mass and width of the are
determined as MeV/ and
MeV.Comment: 13 pages, 6 figure
- …