5,829 research outputs found

    Orbital Dependent Phase Control in Ca2-xSrxRuO4

    Full text link
    We present first-principles studies on the orbital states of the layered perovskites Ca2−x_{2-x}Srx_xRuO4_4. The crossover from antiferromagnetic (AF) Mott insulator for x<0.2x < 0.2 to nearly ferromagnetic (FM) metal at x=0.5x=0.5 is characterized by the systematic change of the xyxy orbital occupation. For the AF side (x<0.2x < 0.2), we present firm evidence for the xyxy ferro-orbital ordering. It is found that the degeneracy of t2gt_{2g} (or ege_g) states is lifted robustly due to the two-dimensional (2D) crystal-structure, even without the Jahn-Teller distortion of RuO6_6. This effect dominates, and the cooperative occupation of xyxy orbital is concluded. In contrast to recent proposals, the resulting electronic structure explains well both the observed X-ray absorption spectra and the double peak structure of optical conductivity. For the FM side (x=0.5x=0.5), however, the xyxy orbital with half filling opens a pseudo-gap in the FM state and contributes to the spin SS=1/2 moment (rather than SS=1 for xx=0.0 case) dominantly, while yz,zxyz,zx states are itinerant with very small spin polarization, explaining the recent neutron data consistently.Comment: 17 pages, 5 figure

    LDA+Gutzwiller Method for Correlated Electron Systems

    Full text link
    Combining the density functional theory (DFT) and the Gutzwiller variational approach, a LDA+Gutzwiller method is developed to treat the correlated electron systems from {\it ab-initio}. All variational parameters are self-consistently determined from total energy minimization. The method is computationally cheaper, yet the quasi-particle spectrum is well described through kinetic energy renormalization. It can be applied equally to the systems from weakly correlated metals to strongly correlated insulators. The calculated results for SrVO3_3, Fe, Ni and NiO, show dramatic improvement over LDA and LDA+U.Comment: 4 pages, 3 figures, 1 tabl

    Anisotropic Optic Conductivities due to Spin and Orbital Orderings in LaVO3 and YVO3: First-Principles Studies

    Full text link
    The anisotropy of low energy (0∼\sim5eV) optical excitations in strongly correlated transition-metal oxides is closely related to the spin and orbital orderings. The recent successes of LDA+UU method in describing the magnetic and electronic structures enable us to calculate the optical conductivity from first-principles. The LaVO3_3 and YVO3_3, both of which have 3d23d^2 configuration and have various spin and orbital ordered phases at low temperature, show distinct anisotropy in the optical spectra. The effects of spin and orbital ordering on the anisotropy are studied in detail based on our first-principles calculations. The experimental spectra of both compounds at low temperature phases can be qualitatively explained with our calculations, while the studies for the intermediate temperature phase of YVO3_3 suggest the substantial persistence of the low temperature phase at elevated temperature.Comment: 6 pages, 3 figures, accepted by PR

    On the 2d Zakharov system with L^2 Schr\"odinger data

    Full text link
    We prove local in time well-posedness for the Zakharov system in two space dimensions with large initial data in L^2 x H^{-1/2} x H^{-3/2}. This is the space of optimal regularity in the sense that the data-to-solution map fails to be smooth at the origin for any rougher pair of spaces in the L^2-based Sobolev scale. Moreover, it is a natural space for the Cauchy problem in view of the subsonic limit equation, namely the focusing cubic nonlinear Schroedinger equation. The existence time we obtain depends only upon the corresponding norms of the initial data - a result which is false for the cubic nonlinear Schroedinger equation in dimension two - and it is optimal because Glangetas-Merle's solutions blow up at that time.Comment: 30 pages, 2 figures. Minor revision. Title has been change

    Examining exotic structure of proton-rich nucleus 23^{23}Al

    Full text link
    The longitudinal momentum distribution (P_{//}) of fragments after one-proton removal from ^{23} Al and reaction cross sections (\sigma_R) for ^{23,24} Al on carbon target at 74A MeV have been measured. The ^{23,24} Al ions were produced through projectile fragmentation of 135 A MeV ^{28} Si primary beam using RIPS fragment separator at RIKEN. P_{//} is measured by a direct time-of-flight (TOF) technique, while \sigma_R is determined using a transmission method. An enhancement in \sigma_R is observed for ^{23} Al compared with ^{24} Al. The P_{//} for ^{22} Mg fragments from ^{23} Al breakup has been obtained for the first time. FWHM of the distributions has been determined to be 232 \pm 28 MeV/c. The experimental data are discussed by using Few-Body Glauber model. Analysis of P_{//} demonstrates a dominant d-wave configuration for the valence proton in ground state of ^{23} Al, indicating that ^{23} Al is not a proton halo nucleus

    Multistage Random Growing Small-World Networks with Power-law degree Distribution

    Full text link
    In this paper, a simply rule that generates scale-free networks with very large clustering coefficient and very small average distance is presented. These networks are called {\bf Multistage Random Growing Networks}(MRGN) as the adding process of a new node to the network is composed of two stages. The analytic results of power-law exponent γ=3\gamma=3 and clustering coefficient C=0.81C=0.81 are obtained, which agree with the simulation results approximately. In addition, the average distance of the networks increases logarithmical with the number of the network vertices is proved analytically. Since many real-life networks are both scale-free and small-world networks, MRGN may perform well in mimicking reality.Comment: 3 figures, 4 page

    Thermophilic microbial cellulose decomposition and methanogenesis pathways recharacterized by metatranscriptomic and metagenomic analysis

    Get PDF
    The metatranscriptomic recharacterization in the present study captured microbial enzymes at the unprecedented scale of 40,000 active genes belonged to 2,269 KEGG functions were identified. The novel information obtained herein revealed interesting patterns and provides an initial transcriptional insight into the thermophilic cellulose methanization process. Synergistic beta-sugar consumption by Thermotogales is crucial for cellulose hydrolysis in the thermophilic cellulose-degrading consortium because the primary cellulose degraders Clostridiales showed metabolic incompetence in subsequent beta-sugar pathways. Additionally, comparable transcription of putative Sus-like polysaccharide utilization loci (PULs) was observed in an unclassified order of Bacteroidetes suggesting the importance of PULs mechanism for polysaccharides breakdown in thermophilic systems. Despite the abundance of acetate as a fermentation product, the acetate-utilizing Methanosarcinales were less prevalent by 60% than the hydrogenotrophic Methanobacteriales. Whereas the aceticlastic methanogenesis pathway was markedly more active in terms of transcriptional activities in key genes, indicating that the less dominant Methanosarcinales are more active than their hydrogenotrophic counterparts in methane metabolism. These findings suggest that the minority of aceticlastic methanogens are not necessarily associated with repressed metabolism, in a pattern that was commonly observed in the cellulose-based methanization consortium, and thus challenge the causal likelihood proposed by previous studies.link_to_OA_fulltex
    • …
    corecore