11 research outputs found
Interactions between marine megafauna and plastic pollution in Southeast Asia
Southeast (SE) Asia is a highly biodiverse region, yet it is also estimated to cumulatively contribute a third of the total global marine plastic pollution. This threat is known to have adverse impacts on marine megafauna, however, understanding of its impacts has recently been highlighted as a priority for research in the region. To address this knowledge gap, a structured literature review was conducted for species of cartilaginous fishes, marine mammals, marine reptiles, and seabirds present in SE Asia, collating cases on a global scale to allow for comparison, coupled with a regional expert elicitation to gather additional published and grey literature cases which would have been omitted during the structured literature review. Of the 380 marine megafauna species present in SE Asia, but also studied elsewhere, we found that 9.1 % and 4.5 % of all publications documenting plastic entanglement (n = 55) and ingestion (n = 291) were conducted in SE Asian countries. At the species level, published cases of entanglement from SE Asian countries were available for 10 % or less of species within each taxonomic group. Additionally, published ingestion cases were available primarily for marine mammals and were lacking entirely for seabirds in the region. The regional expert elicitation led to entanglement and ingestion cases from SE Asian countries being documented in 10 and 15 additional species respectively, highlighting the utility of a broader approach to data synthesis. While the scale of the plastic pollution in SE Asia is of particular concern for marine ecosystems, knowledge of its interactions and impacts on marine megafauna lags behind other areas of the world, even after the inclusion of a regional expert elicitation. Additional funding to help collate baseline data are critically needed to inform policy and solutions towards limiting the interactions of marine megafauna and plastic pollution in SE Asia
Maximising resilience to sea-level rise in urban coastal ecosystems through systematic conservation planning
Coastal cities and their natural environments are vulnerable to the impacts of climate change, especially sea-level rise (SLR). Hard coastal defences play a key role in protecting at-risk urban coastal populations from flooding and erosion, but coastal ecosystems also play important roles in the overall sustainability and resilience of cities and urban centres by contributing to coastal protection. Conserving coastal ecosystems and maximising their resilience will ensure that urban coastal communities can continue to benefit from ecosystem services and improve their adaptive capacity to cope with adverse impacts in the future. Using the hyper-urbanised coast of Singapore as a case study, we modelled the resilience of coastal wetlands to SLR and integrated resilience in conservation planning. We found that the responses of coastal habitats to rising sea level vary across the modelling periods. While there is a slight net gain in the extent of mangrove forests and tidal flats by the end of the century due to potential habitat conversion, the existing habitats will experience a loss in coverage. Highly modified coastlines associated with urbanisation impede the ability of existing wetlands to migrate landward, which is a key mechanism for coastal habitats to cope with rising sea levels. Systematic conservation planning can identify sites that are potentially resilient to SLR and incorporate factors that influence an ecosystem's capability to respond to change. Crucially, the relatively slow rates of SLR and persistence of coastal wetlands during the earlier half of this century present an opportunity to introduce management interventions aimed at enhancing ecosystem resilience.National Research Foundation (NRF)Published versionThis research is supported by the National Research Foundation (NRF), Prime Minister’s Office, Singapore, and the Australian Department of Industry, Innovation and Science under the NRF Australia-Singapore Joint Research Grant Call (NRF2018AU-SG02)
Interactions between marine megafauna and plastic pollution in Southeast Asia
Southeast (SE) Asia is a highly biodiverse region, yet it is also estimated to cumulatively contribute a third of the total global marine plastic pollution. This threat is known to have adverse impacts on marine megafauna, however, understanding of its impacts has recently been highlighted as a priority for research in the region. To address this knowledge gap, a structured literature review was conducted for species of cartilaginous fishes, marine mammals, marine reptiles, and seabirds present in SE Asia, collating cases on a global scale to allow for comparison, coupled with a regional expert elicitation to gather additional published and grey literature cases which would have been omitted during the structured literature review. Of the 380 marine megafauna species present in SE Asia, but also studied elsewhere, we found that 9.1 % and 4.5 % of all publications documenting plastic entanglement (n = 55) and ingestion (n = 291) were conducted in SE Asian countries. At the species level, published cases of entanglement from SE Asian countries were available for 10 % or less of species within each taxonomic group. Additionally, published ingestion cases were available primarily for marine mammals and were lacking entirely for seabirds in the region. The regional expert elicitation led to entanglement and ingestion cases from SE Asian countries being documented in 10 and 15 additional species respectively, highlighting the utility of a broader approach to data synthesis. While the scale of the plastic pollution in SE Asia is of particular concern for marine ecosystems, knowledge of its interactions and impacts on marine megafauna lags behind other areas of the world, even after the inclusion of a regional expert elicitation. Additional funding to help collate baseline data are critically needed to inform policy and solutions towards limiting the interactions of marine megafauna and plastic pollution in SE Asia
Taxonomy based on science is necessary for global conservation
International audienc