1,117 research outputs found
Collective Phase Sensitivity
The collective phase response to a macroscopic external perturbation of a
population of interacting nonlinear elements exhibiting collective oscillations
is formulated for the case of globally-coupled oscillators. The macroscopic
phase sensitivity is derived from the microscopic phase sensitivity of the
constituent oscillators by a two-step phase reduction. We apply this result to
quantify the stability of the macroscopic common-noise induced synchronization
of two uncoupled populations of oscillators undergoing coherent collective
oscillations.Comment: 6 pages, 3 figure
Revolutionary development of computer education : A success story
The University of Colombo, Sri Lanka has been in the forefront of the “Computer Revolution” in Sri Lanka. It has introduced the teaching of computer programming and applications as early as in 1967, more than a decade before other educational institutions, thereby producing, over the years, a large number of pioneer computer scientists and IT graduates out of students entering the university from a variety of disciplines. They are presently employed as researchers, educators, data processing managers, analyst programmers, software engineers and in many others in the professional field of information technology, not only in Sri Lanka but also in other countries. Established in 1870 as the Ceylon Medical College by the government of that day under the leadership of Governor Sir Hercules Robinson, the University of Colombo could claim to have been associated with higher education for over 130 years. The University has become a center of excellence of international repute that contributes significantly towards national development and human resource development in the field on computer science and information communication technology, particularly in the South and South East Asian Region. This paper presents the milestones of the success story, which did not occur without a policy, plan, leadership, group work, collaboration, and donor support.2nd IFIP Conference on the History of Computing and EducationRed de Universidades con Carreras en Informática (RedUNCI
Active Brownian Motion in Threshold Distribution of a Coulomb Blockade Model
Randomly-distributed offset charges affect the nonlinear current-voltage
property via the fluctuation of the threshold voltage of Coulomb blockade
arrays. We analytically derive the distribution of the threshold voltage for a
model of one-dimensional locally-coupled Coulomb blockade arrays, and propose a
general relationship between conductance and the distribution. In addition, we
show the distribution for a long array is equivalent to the distribution of the
number of upward steps for aligned objects of different height. The
distribution satisfies a novel Fokker-Planck equation corresponding to active
Brownian motion. The feature of the distribution is clarified by comparing it
with the Wigner and Ornstein-Uhlenbeck processes. It is not restricted to the
Coulomb blockade model, but instructive in statistical physics generally.Comment: 4pages, 3figure
Noise-induced Turbulence in Nonlocally Coupled Oscillators
We demonstrate that nonlocally coupled limit-cycle oscillators subject to
spatiotemporally white Gaussian noise can exhibit a noise-induced transition to
turbulent states. After illustrating noise-induced turbulent states with
numerical simulations using two representative models of limit-cycle
oscillators, we develop a theory that clarifies the effective dynamical
instabilities leading to the turbulent behavior using a hierarchy of dynamical
reduction methods. We determine the parameter region where the system can
exhibit noise-induced turbulent states, which is successfully confirmed by
extensive numerical simulations at each level of the reduction.Comment: 23 pages, 17 figures, to appear in Phys. Rev.
Collective dynamical response of coupled oscillators with any network structure
We formulate a reduction theory that describes the response of an oscillator
network as a whole to external forcing applied nonuniformly to its constituent
oscillators. The phase description of multiple oscillator networks coupled
weakly is also developed. General formulae for the collective phase sensitivity
and the effective phase coupling between the oscillator networks are found. Our
theory is applicable to a wide variety of oscillator networks undergoing
frequency synchronization. Any network structure can systematically be treated.
A few examples are given to illustrate our theory.Comment: 4 pages, 2 figure
Elastic properties of the Non-Fermi liquid metal and the Dense Kondo semiconductor
We have investigated the elastic properties of the Ce-based filled
skutterudite antimonides CeRuSb and CeOsSb by means
of ultrasonic measurements. CeRuSb shows a slight increase around
130 K in the temperature dependence of the elastic constants ,
(-)/2 and . No apparent softening toward low
temperature due to a quadrupolar response of the 4-electronic ground state
of the Ce ion was observed at low temperatures. In contrast CeOsSb
shows a pronounced elastic softening toward low temperature in the longitudinal
as a function of temperature () below about 15 K, while a slight
elastic softening was observed in the transverse below about 1.5 K.
Furthermore, CeOsSb shows a steep decrease around a phase
transition temperature of 0.9 K in both and. The elastic
softening observed in below about 15 K cannot be explained
reasonably only by the crystalline electric field effect. It is most likely to
be responsible for the coupling between the elastic strain and the
quasiparticle band with a small energy gap in the vicinity of Fermi level. The
elastic properties and the 4 ground state of Ce ions in CeRuSb
and CeOsSb are discussed from the viewpoint of the crystalline
electric field effect and the band structure in the vicinity of Fermi level.Comment: 9 pages, 11 figures, regular pape
Distribution of partition function zeros of the model on the Bethe lattice
The distribution of partition function zeros is studied for the model
of spin glasses on the Bethe lattice. We find a relation between the
distribution of complex cavity fields and the density of zeros, which enables
us to obtain the density of zeros for the infinite system size by using the
cavity method. The phase boundaries thus derived from the location of the zeros
are consistent with the results of direct analytical calculations. This is the
first example in which the spin glass transition is related to the distribution
of zeros directly in the thermodynamical limit. We clarify how the spin glass
transition is characterized by the zeros of the partition function. It is also
shown that in the spin glass phase a continuous distribution of singularities
touches the axes of real field and temperature.Comment: 23 pages, 12 figure
- …