992 research outputs found

    Benchmark Test of CP-PACS for Lattice QCD

    Full text link
    The CP-PACS is a massively parallel computer dedicated for calculations in computational physics and will be in operation in the spring of 1996 at Center for Computational Physics, University of Tsukuba. In this article, we describe the architecture of the CP-PACS and report the results of the estimate of the performance of the CP-PACS for typical lattice QCD calculations.Comment: 12 pages (5 figures), Postscript file, talk presented at "QCD on Massively Parallel Computers" (Yamagata, Japan, March 16-18,1995

    A highly efficient single photon-single quantum dot interface

    Full text link
    Semiconductor quantum dots are a promising system to build a solid state quantum network. A critical step in this area is to build an efficient interface between a stationary quantum bit and a flying one. In this chapter, we show how cavity quantum electrodynamics allows us to efficiently interface a single quantum dot with a propagating electromagnetic field. Beyond the well known Purcell factor, we discuss the various parameters that need to be optimized to build such an interface. We then review our recent progresses in terms of fabrication of bright sources of indistinguishable single photons, where a record brightness of 79% is obtained as well as a high degree of indistinguishability of the emitted photons. Symmetrically, optical nonlinearities at the very few photon level are demonstrated, by sending few photon pulses at a quantum dot-cavity device operating in the strong coupling regime. Perspectives and future challenges are briefly discussed.Comment: to appear as a book chapter in a compilation "Engineering the Atom-Photon Interaction" published by Springer in 2015, edited by A. Predojevic and M. W. Mitchel

    Non-trivial Center Dominance in High Temperature QCD

    Full text link
    We investigate the properties of quarks and gluons above the chiral phase transition temperature Tc,T_c, using the RG improved gauge action and the Wilson quark action with two degenerate quarks mainly on a 323Γ—1632^3\times 16 lattice. In the one-loop perturbation theory, the thermal ensemble is dominated by the gauge configurations with effectively Z(3)Z(3) center twisted boundary conditions, making the thermal expectation value of the spatial Polyakov loop take a non-trivial Z(3)Z(3) center. This is in agreement with our lattice simulation of high temperature QCD. We further observe that the temporal propagator of massless quarks at extremely high temperature Ξ²=100.0 (T≃1058Tc)\beta=100.0 \, (T \simeq10^{58} T_c) remarkably agrees with the temporal propagator of free quarks with the Z(3)Z(3) twisted boundary condition for t/Ltβ‰₯0.2t/L_t \geq 0.2, but differs from that with the Z(3)Z(3) trivial boundary condition. As we increase the mass of quarks mqm_q, we find that the thermal ensemble continues to be dominated by the Z(3)Z(3) twisted gauge field configurations as long as mq≀3.0 Tm_q \le 3.0 \, T and above that the Z(3)Z(3) trivial configurations come in. The transition is essentially identical to what we found in the departure from the conformal region in the zero-temperature many-flavor conformal QCD on a finite lattice by increasing the mass of quarks. We argue that the behavior is consistent with the renormalization group analysis at finite temperature.Comment: 16 pages, 9 figures; 4 tables, an appendix adde

    Photonic Crystal Nanocavities and Waveguides

    Get PDF
    Fabrication of optical structures has evolved to a precision which allows us to control light within etched nanostructures. Nano-optic cavities can be used for efficient and flexible concentration of light in small volumes, and control over both emission wavelength and frequency. Conversely, if a periodic pattern is defined in the top semitransparent metal layer by lithography, it is possible to efficiently couple out the light out of a semiconductor and to simultaneously enhance the spontaneous emission rate. Here we demonstrate the use of photonic crystals for efficient light localization and light extraction
    • …
    corecore