7 research outputs found

    A Modified View on Octocorals: Heteroxenia fuscescens Nematocysts Are Diverse, Featuring Both an Ancestral and a Novel Type

    Get PDF
    Cnidarians are characterized by the presence of stinging cells containing nematocysts, a sophisticated injection system targeted mainly at prey-capture and defense. In the anthozoan subclass Octocorallia nematocytes have been considered to exist only in low numbers, to be small, and all of the ancestral atrichous-isorhiza type. This study, in contrast, revealed numerous nematocytes in the octocoral Heteroxenia fuscescens. The study demonstrates the applicability of cresyl-violet dye for differential staining and stimulating discharge of the nematocysts. In addition to the atrichous isorhiza-type of nematocysts, a novel type of macrobasic-mastigophore nematocysts was found, featuring a shaft, uniquely comprised of three loops and densely packed arrow-like spines. In contrast to the view that octocorals possess a single type of nematocyst, Heteroxenia fuscescens features two distinct types, indicating for the first time the diversification and complexity of nematocysts for Octocorallia

    The promiscuous larvae: flexibility in the establishment of symbiosis in corals

    No full text
    Coral reefs thrive in part because of the symbiotic partnership between corals and Symbiodinium. While this partnership is one of the keys to the success of coral reef ecosystems, surprisingly little is known about many aspects of coral symbiosis, in particular the establishment and development of symbiosis in host species that acquire symbionts anew in each generation. More specifically, the point at which symbiosis is established (i.e., larva vs. juvenile) remains uncertain, as does the source of free-living Symbiodinium in the environment. In addition, the capacity of host and symbiont to form novel combinations is unknown. To explore patterns of initial association between host and symbiont, larvae of two species of Acropora were exposed to sediment collected from three locations on the Great Barrier Reef. A high proportion of larvae established symbiosis shortly after contact with sediments, and Acropora larvae were promiscuous, taking up multiple types of Symbiodinium. The Symbiodinium types acquired from the sediments reflected the symbiont assemblage within a wide range of cnidarian hosts at each of the three sites, suggesting potential regional differences in the free-living Symbiodinium assemblage. Coral larvae clearly have the capacity to take up Symbiodinium prior to settlement, and sediment is a likely source. Promiscuous larvae allow species to associate with Symbiodinium appropriate for potentially novel environments that may be experienced following dispersal

    Cell Biology of Cnidarian-Dinoflagellate Symbiosis

    No full text
    corecore