207 research outputs found

    Symmetries of quantum spaces. Subgroups and quotient spaces of quantum SU(2)SU(2) and SO(3)SO(3) groups

    Full text link
    We prove that each action of a compact matrix quantum group on a compact quantum space can be decomposed into irreducible representations of the group. We give the formula for the corresponding multiplicities in the case of the quotient quantum spaces. We describe the subgroups and the quotient spaces of quantum SU(2) and SO(3) groups.Comment: 30 pages (with very slight changes

    q-deformed Dirac Monopole With Arbitrary Charge

    Full text link
    We construct the deformed Dirac monopole on the quantum sphere for arbitrary charge using two different methods and show that it is a quantum principal bundle in the sense of Brzezinski and Majid. We also give a connection and calculate the analog of its Chern number by integrating the curvature over Sq2S^2_q.Comment: Technical modifications made on the definition of the base. A more geometrical trivialization is used in section

    Green function on the quantum plane

    Full text link
    Green function (which can be called the q-analogous of the Hankel function) on the quantum plane E_q^2= E_q(2)/U(1) is constructed.Comment: 8 page

    A Class of Bicovariant Differential Calculi on Hopf Algebras

    Full text link
    We introduce a large class of bicovariant differential calculi on any quantum group AA, associated to AdAd-invariant elements. For example, the deformed trace element on SLq(2)SL_q(2) recovers Woronowicz' 4D±4D_\pm calculus. More generally, we obtain a sequence of differential calculi on each quantum group A(R)A(R), based on the theory of the corresponding braided groups B(R)B(R). Here RR is any regular solution of the QYBE.Comment: 16 page

    Quantum isometries and noncommutative spheres

    Full text link
    We introduce and study two new examples of noncommutative spheres: the half-liberated sphere, and the free sphere. Together with the usual sphere, these two spheres have the property that the corresponding quantum isometry group is "easy", in the representation theory sense. We present as well some general comments on the axiomatization problem, and on the "untwisted" and "non-easy" case.Comment: 16 page

    Quantum Principal Bundles and Corresponding Gauge Theories

    Full text link
    A generalization of classical gauge theory is presented, in the framework of a noncommutative-geometric formalism of quantum principal bundles over smooth manifolds. Quantum counterparts of classical gauge bundles, and classical gauge transformations, are introduced and investigated. A natural differential calculus on quantum gauge bundles is constructed and analyzed. Kinematical and dynamical properties of corresponding gauge theories are discussed.Comment: 28 pages, AMS-LaTe

    Quantum teardrops

    Full text link
    Algebras of functions on quantum weighted projective spaces are introduced, and the structure of quantum weighted projective lines or quantum teardrops are described in detail. In particular the presentation of the coordinate algebra of the quantum teardrop in terms of generators and relations and classification of irreducible *-representations are derived. The algebras are then analysed from the point of view of Hopf-Galois theory or the theory of quantum principal bundles. Fredholm modules and associated traces are constructed. C*-algebras of continuous functions on quantum weighted projective lines are described and their K-groups computed.Comment: 18 page

    On a correspondence between quantum SU(2), quantum E(2) and extended quantum SU(1,1)

    Full text link
    In a previous paper, we showed how one can obtain from the action of a locally compact quantum group on a type I-factor a possibly new locally compact quantum group. In another paper, we applied this construction method to the action of quantum SU(2) on the standard Podles sphere to obtain Woronowicz' quantum E(2). In this paper, we will apply this technique to the action of quantum SU(2) on the quantum projective plane (whose associated von Neumann algebra is indeed a type I-factor). The locally compact quantum group which then comes out at the other side turns out to be the extended SU(1,1) quantum group, as constructed by Koelink and Kustermans. We also show that there exists a (non-trivial) quantum groupoid which has at its corners (the duals of) the three quantum groups mentioned above.Comment: 35 page
    • …
    corecore