490 research outputs found

    Vanishing topology of codimension 1 multi-germs over R\Bbb R and C\Bbb C

    Get PDF
    We construct all A\cal Ae-codimension 1 multi-germs of analytic (or smooth) maps (kn, T) [rightward arrow] (kp, 0), with n [gt-or-equal, slanted] p − 1, (n, p) nice dimensions, k = C\mathbb C or R\mathbb R, by augmentation and concatenation operations, starting from mono-germs (|T| = 1) and one 0-dimensional bi-germ. As an application, we prove general statements for multi-germs of corank [less-than-or-eq, slant] 1: every one has a real form with real perturbation carrying the vanishing homology of the complexification, every one is quasihomogeneous, and when n = p − 1 every one has image Milnor number equal to 1 (this last is already known when n [gt-or-equal, slanted] p)

    Liftable vector fields over corank one multigerms

    Full text link
    In this paper, a systematic method is given to construct all liftable vector fields over an analytic multigerm f:(Kn,S)→(Kp,0)f: (\mathbb{K}^n, S)\to (\mathbb{K}^p,0) of corank at most one admitting a one-parameter stable unfolding.Comment: 34 pages. In ver. 2, several careless mistakes for calculations in Section 6 were correcte

    XMM-Newton Observation of the Northwest Radio Relic Region in Abell 3667

    Full text link
    Abell 3667 is the archetype of a merging cluster with radio relics. The NW radio relic is the brightest cluster relic or halo known, and is believed to be due to a strong merger shock. We have observed the NW relic for 40 ksec of net XMM time. We observe a global decline of temperature across the relic from 6 to 1 keV, similar to the Suzaku results. Our new observations reveal a sharp change of both temperature and surface brightness near the position of the relic. The increased X-ray emission on the relic can be equivalently well described by either a thermal or nonthermal spectral model. The parameters of the thermal model are consistent with a Mach number M~2 shock and a shock speed of ~1200 km s^-1. The energy content of the relativistic particles in the radio relic can be explained if they are (re)-accelerated by the shock with an efficiency of ~0.2%. Comparing the limit on the inverse Compton X-ray emission with the measured radio synchrotron emission, we set a lower limit to the magnetic field in the relic of 3 muG. If the emission from the relic is non-thermal, this lower limit is in fact the required magnetic field.Comment: 11 pages, ApJ in pres

    On the absence of radio halos in clusters with double relics

    Get PDF
    Pairs of radio relics are believed to form during cluster mergers, and are best observed when the merger occurs in the plane of the sky. Mergers can also produce radio halos, through complex processes likely linked to turbulent re-acceleration of cosmic-ray electrons. However, only some clusters with double relics also show a radio halo. Here, we present a novel method to derive upper limits on the radio halo emission, and analyse archival X-ray Chandra data, as well as galaxy velocity dispersions and lensing data, in order to understand the key parameter that switches on radio halo emission. We place upper limits on the halo power below the P1.4 GHz M500P_{\rm 1.4 \, GHz}\, M_{500} correlation for some clusters, confirming that clusters with double relics have different radio properties. Computing X-ray morphological indicators, we find that clusters with double relics are associated with the most disturbed clusters. We also investigate the role of different mass-ratios and time-since-merger. Data do not indicate that the merger mass ratio has an impact on the presence or absence of radio halos (the null hypothesis that the clusters belong to the same group cannot be rejected). However, the data suggests that the absence of radio halos could be associated with early and late mergers, but the sample is too small to perform a statistical test. Our study is limited by the small number of clusters with double relics. Future surveys with LOFAR, ASKAP, MeerKat and SKA will provide larger samples to better address this issue.Comment: 12 pages, 7 figures, MNRAS accepte

    Gas Clumping in the Outskirts of Galaxy Clusters, an Assessment of the Sensitivity of STAR-X

    Full text link
    In the outskirts of galaxy clusters, entropy profiles measured from X-ray observations of the hot intracluster medium (ICM) drops off unexpectedly. One possible explanation for this effect is gas clumping, where pockets of cooler and denser structures within the ICM are present. Current observatories are unable to directly detect these hypothetical gas clumps. One of the science drivers of the proposed STAR-X observatory is to resolve these or similar structures. Its high spatial resolution, large effective area, and low instrumental background make STAR-X ideal for directly detecting and characterizing clumps and diffuse emission in cluster outskirts. The aim of this work is to simulate observations of clumping in clusters to determine how well STAR-X will be able to detect clumps, as well as what clumping properties reproduce observed entropy profiles. This is achieved by using yt, pyXSIM, SOXS, and other tools to inject ideally modeled clumps into three-dimensional models derived from actual clusters using their observed profiles from other X-ray missions. Radial temperature and surface brightness profiles are then extracted from mock observations using concentric annuli. We find that in simulated observations for STAR-X, a parameter space of clump properties exists where gas clumps can be successfully identified using wavdetect and masked, and are able to recover the true cluster profiles. This demonstrates that STAR-X could be capable of detecting substructure in the outskirts of nearby clusters and that the properties of both the outskirts and the clumps will be revealed.Comment: This is a pre-copyedited, author-produced PDF of an article accepted for publication in RAS Techniques and Instruments (RASTI) following peer review. The version of record is available online at: https://academic.oup.com/rasti/article/doi/10.1093/rasti/rzad042/725882

    GRB 000418: A Hidden Jet Revealed?

    Get PDF
    We report on optical, near-infrared and centimeter radio observations of GRB000418 which allow us to follow the evolution of the afterglow from 2 to 200 days after the gamma-ray burst. In modeling these broad-band data, we find that an isotropic explosion in a constant density medium is unable to simultaneously fit both the radio and optical data. However, a jet-like outflow with an opening angle of 10-20 degress provides a good description of the data. The evidence in favor of a jet interpretation is based on the behavior of the radio light curves, since the expected jet break is masked at optical wavelengths by the light of the host galaxy. We also find evidence for extinction, presumably arising from within the host galaxy, with A(V)=0.4 mag, and host flux densities of F_R=1.1 uJy and F_K=1.7 uJy. These values supercede previous work on this burst due to the availability of a broad-band data set allowing a global fitting approach. A model in which the GRB explodes into a wind-stratified circumburst medium cannot be ruled out by these data. However, in examining a sample of other bursts (e.g. GRB990510, GRB000301C) we favor the jet interpretation for GRB000418.Comment: ApJ, submitte

    Charging Pattern Optimization for Lithium-Ion Batteries with An Electrothermal-Aging Model

    Get PDF
    This paper applies advanced battery modeling and multi-objective constrained nonlinear optimization techniques to derive suitable charging patterns for lithium-ion batteries. Three important yet competing charging objectives, including battery health, charging time, and energy conversion efficiency, are taken into account simultaneously. These optimization objectives are first subject to a high-fidelity battery model that is synthesized from recently developed individual electrical, thermal, and aging models. The coupling relationship and multiple timescales among different model dynamics are identified. Furthermore, constraints are considered explicitly on the current, voltage, state-of-charge, and temperature. Such a complex charging problem is solved by using an ensemble multi-objective biogeography-based optimization (EM-BBO) approach. As a result, two charging patterns, namely the constant current-constant voltage (CC-CV) and multistage constant current-constant voltage (MCC-CV), are optimized to balance various combinations of charging objectives. Different trade-offs and sensitive elements are compared and analyzed based on the Pareto frontiers. Illustrative results demonstrate that the proposed strategy can effectively offer feasible health-conscious charging with desirable trade-offs among charging speed and energy conversion efficiency under different demand priorities

    Anti-correlation between X-ray luminosity and pulsed fraction in the Small Magellanic Cloud pulsar SXP 1323

    Full text link
    We report the evidence for the anti-correlation between pulsed fraction (PF) and luminosity of the X-ray pulsar SXP 1323, found for the first time in a luminosity range 103510^{35}--103710^{37} erg s−1^{-1} from observations spanning 15 years. The phenomenon of a decrease in X-ray PF when the source flux increases has been observed in our pipeline analysis of other X-ray pulsars in the Small Magellanic Cloud (SMC). It is expected that the luminosity under a certain value decreases as the PF decreases due to the propeller effect. Above the propeller region, an anti-correlation between the PF and flux might occur either as a result of an increase in the un-pulsed component of the total emission or a decrease of the pulsed component. Additional modes of accretion may also be possible, such as spherical accretion and a change in emission geometry. At higher mass accretion rates, the accretion disk could also extend closer to the neutron star (NS) surface, where a reduced inner radius leads to hotter inner disk emission. These modes of plasma accretion may affect the change in the beam configuration to fan-beam dominant emission.Comment: It has been accepted for publication in Monthly Notices of the Royal Astronomical Society Letter

    A Hard X-ray Study of the Normal Star-Forming Galaxy M83 with NuSTAR

    Get PDF
    We present results from sensitive, multi-epoch NuSTAR observations of the late-type star-forming galaxy M83 (d=4.6 Mpc), which is the first investigation to spatially resolve the hard (E>10 keV) X-ray emission of this galaxy. The nuclear region and ~ 20 off-nuclear point sources, including a previously discovered ultraluminous X-ray (ULX) source, are detected in our NuSTAR observations. The X-ray hardnesses and luminosities of the majority of the point sources are consistent with hard X-ray sources resolved in the starburst galaxy NGC 253. We infer that the hard X-ray emission is most likely dominated by intermediate accretion state black hole binaries and neutron star low-mass X-ray binaries (Z-sources). We construct the X-ray binary luminosity function (XLF) in the NuSTAR band for an extragalactic environment for the first time. The M83 XLF has a steeper XLF than the X-ray binary XLF in NGC 253, consistent with previous measurements by Chandra at softer X-ray energies. The NuSTAR integrated galaxy spectrum of M83 drops quickly above 10 keV, which is also seen in the starburst galaxies NGC253, NGC 3310 and NGC 3256. The NuSTAR observations constrain any AGN to be either highly obscured or to have an extremely low luminosity of ∼<_{\sim}^<1038^{38} erg/s (10-30 keV), implying it is emitting at a very low Eddington ratio. An X-ray point source consistent with the location of the nuclear star cluster with an X-ray luminosity of a few times 1038^{38} erg/s may be a low-luminosity AGN but is more consistent with being an X-ray binary.Comment: Accepted for publication in ApJ (25 pages, 17 figures

    Computer-Aided Design and Analysis of Spectrally Aligned Hybrid Plasmonic Nanojunctions for SERS Detection of Nucleobases

    Get PDF
    Hybrid plasmonic nanojunctions with optimal surface-enhanced Raman scattering (SERS) activity are designed via a computer-aided approach, and fabricated via time-controlled aqueous self-assembly of core@shell gold@silver nanoparticles (Au@Ag NPs) with cucurbit[7]uril (CB7) upon simple mixing. The authors showed that SERS signals can be significantly boosted by the incorporation of a strong plasmonic metal and the spectral alignment between the maximal localized surface plasmon resonance (LSPR) and a laser wavelength used for SERS excitation. In a proof-of-concept application, SERS detection of nucleobases with a 633-nm laser has been demonstrated by positioning them within the nanojunctions via formation of host–guest complexes with CB7, achieving rapid response with a detection limit down to sub-nanomolar concentration and an enhancement factor (EF) up to ≈109–1010, i.e., the minimum required EF for single-molecule detection. Furthermore, machine-learning-driven multiplexing of nucleobases is demonstrated, which shows promise in point-of-care diagnosis of diseases related to oxidative damage of DNA and wastewater-based epidemiology
    • …
    corecore