192 research outputs found

    An Ising-Like model for protein mechanical unfolding

    Full text link
    The mechanical unfolding of proteins is investigated by extending the Wako-Saito-Munoz-Eaton model, a simplified protein model with binary degrees of freedom, which has proved successful in describing the kinetics of protein folding. Such a model is generalized by including the effect of an external force, and its thermodynamics turns out to be exactly solvable. We consider two molecules, the 27th immunoglobulin domain of titin and protein PIN1. In the case of titin we determine equilibrium force-extension curves and study nonequilibrium phenomena in the frameworks of dynamic loading and force clamp protocols, verifying theoretical laws and finding the position of the kinetic barrier which hinders the unfolding of the molecule. The PIN1 molecule is used to check the possibility of computing the free energy landscape as a function of the molecule length by means of an extended form of the Jarzynski equality.Comment: 4 pages + appendi

    Observation of thundercloud-related gamma rays and neutrons in Tibet

    Get PDF
    During the 2010 rainy season in Yangbajing (4300 m above sea level) in Tibet, China, a long-duration count enhancement associated with thunderclouds was detected by a solar-neutron telescope and neutron monitors installed at the Yangbajing Comic Ray Observatory. The event, lasting for ∼40  min, was observed on July 22, 2010. The solar-neutron telescope detected significant γ-ray signals with energies >40  MeV in the event. Such a prolonged high-energy event has never been observed in association with thunderclouds, clearly suggesting that electron acceleration lasts for 40 min in thunderclouds. In addition, Monte Carlo simulations showed that >10  MeV γ rays largely contribute to the neutron monitor signals, while >1  keV neutrons produced via a photonuclear reaction contribute relatively less to the signals. This result suggests that enhancements of neutron monitors during thunderstorms are not necessarily clear evidence for neutron production, as previously thought

    Carbon-Enhanced Metal-Poor Stars. III. Main-Sequence Turn-Off Stars from the SDSS/SEGUE Sample

    Full text link
    The chemical compositions of seven Carbon-Enhanced Metal-Poor (CEMP) turn-off stars are determined from high-resolution spectroscopy. Five of them are selected from the SDSS/SEGUE sample of metal-poor stars. The effective temperatures of these objects are all higher than 6000 K, while their metallicities, parametrized by [Fe/H], are all below -2. Six of our program objects exhibit high abundance ratios of barium ([Ba/H]> +1), suggesting large contributions of the products of former AGB companions via mass transfer across binary systems. Combining our results with previous studies provides a total of 20 CEMP main-sequence turn-off stars for which the abundances of carbon and at least some neutron-capture elements are determined. Inspection of the [C/H] ratios for this sample of CEMP turn-off stars show that they are generally higher than those of CEMP giants; their dispersion in this ratio is also smaller. We take these results to indicate that the carbon-enhanced material provided from the companion AGB star is preserved at the surface of turn-off stars with no significant dilution. In contrast, a large dispersion in the observed [Ba/H] is found for the sample of CEMP turn-off stars, suggesting that the efficiency of the s-process in very metal-poor AGB stars may differ greatly from star to star. Four of the six stars from the SDSS/SEGUE sample exhibit kinematics that are associated with membership in the outer-halo population, a remarkably high fraction.Comment: 45 pages, 10 figures, 10 tables, Astrophysical Journal, in pres

    Evidence for a companion to BM Gem, a silicate carbon star

    Full text link
    Balmer and Paschen continuum emission as well as Balmer series lines of P Cygni-type profile from H_gamma through H_23 are revealed in the violet spectra of BM Gem, a carbon star associated with an oxygen-rich circumstellar shell (`silicate carbon star') observed with the high dispersion spectrograph (HDS) on the Subaru telescope. The blue-shifted absorption in the Balmer lines indicates the presence of an outflow, the line of sight velocity of which is at least 400 km s^-1, which is the highest outflow velocity observed to date in a carbon star. We argue that the observed unusual features in BM Gem are strong evidence for the presence of a companion, which should form an accretion disk that gives rise to both an ionized gas region and a high velocity, variable outflow. The estimated luminosity of ~0.2 (0.03-0.6) L_sun for the ionized gas can be maintained by a mass accretion rate to a dwarf companion of ~10^-8 M_sun yr^-1, while ~10^-10 M_sun yr^-1 is sufficient for accretion to a white dwarf companion. These accretion rates are feasible for some detached binary configurations on the basis of the Bond-Hoyle type accretion process. We concluded that the carbon star BM Gem is in a detached binary system with a companion of low mass and low luminosity. However, we are unable to determine whether this companion object is a dwarf or a white dwarf. The upper limits for binary separation are 210 AU and 930 AU for a dwarf and a white dwarf, respectively. We also note that the observed features of BM Gem mimic those of Mira (omi Cet), which may suggest actual similarities in their binary configurations and circumstellar structures.Comment: 11 pages, 2 figures, 1 table, accepted for publication in Ap

    The s Process: Nuclear Physics, Stellar Models, Observations

    Full text link
    Nucleosynthesis in the s process takes place in the He burning layers of low mass AGB stars and during the He and C burning phases of massive stars. The s process contributes about half of the element abundances between Cu and Bi in solar system material. Depending on stellar mass and metallicity the resulting s-abundance patterns exhibit characteristic features, which provide comprehensive information for our understanding of the stellar life cycle and for the chemical evolution of galaxies. The rapidly growing body of detailed abundance observations, in particular for AGB and post-AGB stars, for objects in binary systems, and for the very faint metal-poor population represents exciting challenges and constraints for stellar model calculations. Based on updated and improved nuclear physics data for the s-process reaction network, current models are aiming at ab initio solution for the stellar physics related to convection and mixing processes. Progress in the intimately related areas of observations, nuclear and atomic physics, and stellar modeling is reviewed and the corresponding interplay is illustrated by the general abundance patterns of the elements beyond iron and by the effect of sensitive branching points along the s-process path. The strong variations of the s-process efficiency with metallicity bear also interesting consequences for Galactic chemical evolution.Comment: 53 pages, 20 figures, 3 tables; Reviews of Modern Physics, accepte

    The Origin of Carbon-Enhancement and Initial Mass Function of Extremely Metal-Poor Stars in the Galactic Halo

    Get PDF
    It is known that the carbon-enhanced, extremely metal-poor (CEMP) stars constitute a substantial proportion in the extremely metal-poor (EMP) stars of the Galactic Halo, by far larger than CH stars in Population II stars. We investigate their origin with taking into account an additional evolutionary path to the surface carbon-enrichment, triggered by hydrogen engulfment by the helium flash convection, in EMP stars of [Fe/H]2.5[Fe/H] \lesssim -2.5. This process is distinct from the third dredge-up operating in more metal-rich stars and also in EMP stars. In binary systems of EMP stars, the secondary stars become CEMP stars through mass transfer from the primary stars of low and intermediate masses, which have developed the surface carbon-enhancement. Our binary scenario can predict the variations in the abundances not only for carbon but also for nitrogen and s-process elements and reasonably explain the observed properties such as the stellar distributions with respect to the carbon abundances, the binary periods, and the evolutionary stages. Furthermore, from the observed frequencies of CEMP stars with and without s-process element enhancement, we demonstrate that the initial mass function of EMP stars need to give the mean mass ~10\msun under the reasonable assumptions on the distributions of orbital separations and mass ratio of binary components. This also indicates that the currently observed EMP stars were exclusively born as the secondary members of binaries, making up 10\sim 10% remnants of EMP binary systems of mass ~10^8\msun in total; in addition to CEMP stars with white dwarf companions, a significant fraction of them have experienced supernova explosions of their companions. We discuss the implications of the present results in relation to the formation of Galactic halo.Comment: 66 pages, 12 figures, 2 tables Accepted for publication in Ap
    corecore