3,936 research outputs found
Rotational Perturbations of Friedmann-Robertson-Walker Type Brane-World Cosmological Models
First order rotational perturbations of the Friedmann-Robertson-Walker metric
are considered in the framework of the brane-world cosmological models. A
rotation equation, relating the perturbations of the metric tensor to the
angular velocity of the matter on the brane is derived under the assumption of
slow rotation. The mathematical structure of the rotation equation imposes
strong restrictions on the temporal and spatial dependence of the brane matter
angular velocity. The study of the integrable cases of the rotation equation
leads to three distinct models, which are considered in detail. As a general
result we find that, similarly to the general relativistic case, the rotational
perturbations decay due to the expansion of the matter on the brane. One of the
obtained consistency conditions leads to a particular, purely inflationary
brane-world cosmological model, with the cosmological fluid obeying a
non-linear barotropic equation of state.Comment: 14 pages, 5 figures, REVTEX
Renormalization Group Approach to Causal Viscous Cosmological Models
The renormalization group method is applied to the study of homogeneous and
flat Friedmann-Robertson-Walker type Universes, filled with a causal bulk
viscous cosmological fluid. The starting point of the study is the
consideration of the scaling properties of the gravitational field equations,
of the causal evolution equation of the bulk viscous pressure and of the
equations of state. The requirement of scale invariance imposes strong
constraints on the temporal evolution of the bulk viscosity coefficient,
temperature and relaxation time, thus leading to the possibility of obtaining
the bulk viscosity coefficient-energy density dependence. For a cosmological
model with bulk viscosity coefficient proportional to the Hubble parameter, we
perform the analysis of the renormalization group flow around the scale
invariant fixed point, therefore obtaining the long time behavior of the scale
factor.Comment: 19 pages. RevTeX4. Revised version. Accepted in Classical and Quantum
Gravit
Viscous Bianchi type I universes in brane cosmology
We consider the dynamics of a viscous cosmological fluid in the generalized
Randall-Sundrum model for an anisotropic, Bianchi type I brane. To describe the
dissipative effects we use the Israel-Hiscock-Stewart full causal thermodynamic
theory. By assuming that the matter on the brane obeys a linear barotropic
equation of state, and the bulk viscous pressure has a power law dependence on
the energy density, the general solution of the field equations can be obtained
in an exact parametric form. The obtained solutions describe generally a
non-inflationary brane world. In the large time limit the brane Universe
isotropizes, ending in an isotropic and homogeneous state. The evolution of the
temperature and of the comoving entropy of the Universe is also considered, and
it is shown that due to the viscous dissipative processes a large amount of
entropy is created in the early stages of evolution of the brane world.Comment: 13 pages, 5 figures, to appear in Class. Quantum Gra
Causal Bulk Viscous Dissipative Isotropic Cosmologies with Variable Gravitational and Cosmological Constants
We consider the evolution of a flat Friedmann-Robertson-Walker Universe,
filled with a causal bulk viscous cosmological fluid, in the presence of
variable gravitational and cosmological constants. The basic equation for the
Hubble parameter, generalizing the evolution equation in the case of constant
gravitational coupling and cosmological term, is derived, under the
supplementary assumption that the total energy of the Universe is conserved. By
assuming that the cosmological constant is proportional to the square of the
Hubble parameter and a power law dependence of the bulk viscosity coefficient,
temperature and relaxation time on the energy density of the cosmological
fluid, two classes of exact solutions of the field equations are obtained. In
the first class of solutions the Universe ends in an inflationary era, while in
the second class of solutions the expansion of the Universe is non-inflationary
for all times. In both models the cosmological "constant" is a decreasing
function of time, while the gravitational "constant" increases in the early
period of evolution of the Universe, tending in the large time limit to a
constant value.Comment: 14 pages, 15 figure
A Unified Strategy to ent-Kauranoid Natural Products: Total Syntheses of (−)-Trichorabdal A and (−)-Longikaurin E
The first total syntheses of (−)-trichorabdal A and (−)-longikaurin E are reported. A unified synthetic strategy is employed that relies on a Pd-mediated oxidative cyclization of a silyl ketene acetal to generate an all-carbon quaternary center and build the bicyclo[3.2.1]octane framework. These studies, taken together with our previous synthesis of (−)-maoecrystal Z, demonstrate that three architecturally distinct ent-kauranoids can be prepared from a common spirolactone intermediate
CVaR minimization by the SRA algorithm
Using the risk measure CV aR in �nancial analysis has become
more and more popular recently. In this paper we apply CV aR for portfolio optimization. The problem is formulated as a two-stage stochastic programming model, and the SRA algorithm, a recently developed heuristic algorithm, is applied for minimizing CV aR
- …