398 research outputs found

    A QM/MM approach for the study of monolayer-protected gold clusters

    Full text link
    We report the development and implementation of hybrid methods that combine quantum mechanics (QM) with molecular mechanics (MM) to theoretically characterize thiolated gold clusters. We use, as training systems, structures such as Au25(SCH2-R)18 and Au38(SCH2-R)24, which can be readily compared with recent crystallographic data. We envision that such an approach will lead to an accurate description of key structural and electronic signatures at a fraction of the cost of a full quantum chemical treatment. As an example, we demonstrate that calculations of the 1H and 13C NMR shielding constants with our proposed QM/MM model maintain the qualitative features of a full DFT calculation, with an order-of-magnitude increase in computational efficiency.Comment: Journal of Materials Science, 201

    Importance of electronic self-consistency in the TDDFT based treatment of nonadiabatic molecular dynamics

    Full text link
    A mixed quantum-classical approach to simulate the coupled dynamics of electrons and nuclei in nanoscale molecular systems is presented. The method relies on a second order expansion of the Lagrangian in time-dependent density functional theory (TDDFT) around a suitable reference density. We show that the inclusion of the second order term renders the method a self-consistent scheme and improves the calculated optical spectra of molecules by a proper treatment of the coupled response. In the application to ion-fullerene collisions, the inclusion of self-consistency is found to be crucial for a correct description of the charge transfer between projectile and target. For a model of the photoreceptor in retinal proteins, nonadiabatic molecular dynamics simulations are performed and reveal problems of TDDFT in the prediction of intra-molecular charge transfer excitations.Comment: 9 pages, 8 figures. Minor changes in content wrt older versio

    Characterization of the thermal and photoinduced reactions of photochromic spiropyrans in aqueous solution

    Get PDF
    Six water-soluble spiropyran derivatives have been characterized with respect to the thermal and photoinduced reactions over a broad pH-interval. A comprehensive kinetic model was formulated including the spiro- and the merocyanine isomers, the respective protonated forms, and the hydrolysis products. The experimental studies on the hydrolysis reaction mechanism were supplemented by calculations using quantum mechanical (QM) models employing density functional theory. The results show that (1) the substitution pattern dramatically influences the pKa-values of the protonated forms as well as the rates of the thermal isomerization reactions, (2) water is the nucleophile in the hydrolysis reaction around neutral pH, (3) the phenolate oxygen of the merocyanine form plays a key role in the hydrolysis reaction. Hence, the nonprotonated merocyanine isomer is susceptible to hydrolysis, whereas the corresponding protonated form is stable toward hydrolytic degradation

    Scoring docking conformations using predicted protein interfaces

    Get PDF
    BACKGROUND: Since proteins function by interacting with other molecules, analysis of protein-protein interactions is essential for comprehending biological processes. Whereas understanding of atomic interactions within a complex is especially useful for drug design, limitations of experimental techniques have restricted their practical use. Despite progress in docking predictions, there is still room for improvement. In this study, we contribute to this topic by proposing T-PioDock, a framework for detection of a native-like docked complex 3D structure. T-PioDock supports the identification of near-native conformations from 3D models that docking software produced by scoring those models using binding interfaces predicted by the interface predictor, Template based Protein Interface Prediction (T-PIP). RESULTS: First, exhaustive evaluation of interface predictors demonstrates that T-PIP, whose predictions are customised to target complexity, is a state-of-the-art method. Second, comparative study between T-PioDock and other state-of-the-art scoring methods establishes T-PioDock as the best performing approach. Moreover, there is good correlation between T-PioDock performance and quality of docking models, which suggests that progress in docking will lead to even better results at recognising near-native conformations. CONCLUSION: Accurate identification of near-native conformations remains a challenging task. Although availability of 3D complexes will benefit from template-based methods such as T-PioDock, we have identified specific limitations which need to be addressed. First, docking software are still not able to produce native like models for every target. Second, current interface predictors do not explicitly consider pairwise residue interactions between proteins and their interacting partners which leaves ambiguity when assessing quality of complex conformations
    • …
    corecore