3,533 research outputs found

    Nonperturbative Effects in Quarkonia Associated with Large Orders in Perturbation Theory

    Get PDF
    We show that the perturbation series for quarkonia energies diverges at large orders. This results in a perturbative ambiguity in the energy that scales as e^(-1/a*Lambda) where a is the Bohr radius of quarkonium and Lambda is the QCD scale parameter. This ambiguity is associated with a nonperturbative contribution to the energy from distances of order 1/Lambda and greater. This contribution is separate from that of the gluon condensate.Comment: 6 pages, 2 figure

    Semiclassical suppression of black hole production in particle collisions

    Get PDF
    It is argued that the cross section for production of large black holes, for which a semiclassical description is applicable, cannot be given by the geometric area of the black hole horizon, as claimed recently in the literature. Rather the production cross section in a few-particle collision is suppressed by at least a factor exp(-I_E) with I_E being the Gibbons-Hawking (Euclidean) action for the black hole. Thus only essentially non-classical small black holes with mass of the order of the Planck mass can possibly be produced in few-particle collisions at trans-Planckian energies.Comment: 6 page

    A Note on Quasi-Triangulated Graphs

    Get PDF
    A graph is quasi-triangulated if each of its induced subgraphs has a vertex which is either simplicial (its neighbors form a clique) or cosimplicial (its nonneighbors form an independent set). We prove that a graph G is quasi-triangulated if and only if each induced subgraph H of G contains a vertex that does not lie in a hole, or an antihole, where a hole is a chordless cycle with at least four vertices, and an antihole is the complement of a hole. We also present an algorithm that recognizes a quasi-triangulated graph in O(nm) time

    Aspects Of Heavy Quark Theory

    Full text link
    Recent achievements in the heavy quark theory are critically reviewed. The emphasis is put on those aspects which either did not attract enough attention or cause heated debates in the current literature. Among other topics we discuss (i) basic parameters of the heavy quark theory; (ii) a class of exact QCD inequalities; (iii) new heavy quark sum rules; (iv) virial theorem; (v) applications (|V_cb| from the total semileptonic width and from the B->D* transition at zero recoil). In some instances new derivations of the previously known results are given, or new aspects addressed. In particular, we dwell on the exact QCD inequalities. Furthermore, a toy model is considered that may shed light on the controversy regarding the value of the kinetic energy of heavy quarks obtained by different methods.Comment: 67 pages, 6 Figures; plain LaTeX. Changes: Some equations in Sect.4 related to spin-nonsinglet sum rules are corrected. The references are updated

    Inflating with the QCD Axion

    Full text link
    We show that the QCD axion can drive inflation via a series of tunneling events. For axion models with a softly broken ZNZ_N symmetry, the axion potential has a series of NN local minima and may be modeled by a tilted cosine. Chain inflation results along this tilted cosine: the field tunnels from an initial minimum near the top of the potential through a series of ever lower minima to the bottom. This results in sufficient inflation and reheating. QCD axions, potentially detectable in current searches, may thus simultaneously solve problems in particle physics and provide inflation.Comment: 5 pages, 1 figure, revised for submission to PR

    Electromagnetic leptogenesis at the TeV scale

    Full text link
    We construct an explicit model implementing electromagnetic leptogenesis. In a simple extension of the Standard Model, a discrete symmetry forbids the usual decays of the right-handed neutrinos, while allowing for an effective coupling between the left-handed and right-handed neutrinos through the electromagnetic dipole moment. This generates correct leptogenesis with resonant enhancement and also the required neutrino mass via a TeV scale seesaw mechanism. The model is consistent with low energy phenomenology and would have distinct signals in the next generation colliders, and, perhaps even the LHC.Comment: 14 pages, 2 eps figure

    The XYZs of Charmonium at BES

    Get PDF
    This contribution reviews some recent developments in charmonium spectroscopy, and discusses related theoretical predictions. The spectrum of states, strong decays of states above open charm threshold, electromagnetic transitions, and issues related to the recent discoveries of the "XYZ" states are discussed. Contributions that BES can make to our understanding of charmonium and related states are stressed in particular.Comment: 5 pages, 1 eps figure. Invited contribution to the International Workshop on Tau-Charm Physics Charm2006 (5-7 June 2006, Beijing, China

    Model-independent Study of Magnetic Dipole Transitions in Quarkonium

    Full text link
    We study magnetic dipole (M1) transitions between two quarkonia in the framework of non-relativistic effective field theories of QCD. Relativistic corrections of relative order v^2 are investigated in a systematic fashion. Non-perturbative corrections due to color-octet effects are considered for the first time and shown to vanish at leading order. Exact, all order expressions for the relevant 1/m and 1/m^2 operators are derived. The results allow us to scrutinize several potential model claims. In particular, we show that QCD excludes both contributions to the anomalous magnetic moment of the quarkonium induced by low-energy fluctuations and contributions to the magnetic dipole operators of the type induced by a scalar potential. Finally, we apply our results to the transitions J/psi -> eta_c gamma, Upsilon(1S) -> eta_b gamma, Upsilon(2S) -> eta_b(2S) gamma, Upsilon(2S) -> eta_b gamma, eta_b(2S) -> Upsilon(1S) gamma, h_b(1P) -> chi_{b0,1}(1P) gamma and chi_{b2}(1P) -> h_b(1P) gamma by assuming these quarkonium states in the weak-coupling regime. Our analysis shows that the J/psi -> eta_c gamma width is consistent with a weak-coupling treatment of the charmonium ground state, while such a treatment for the hindered transition Upsilon(2S) -> eta_b gamma appears difficult to accommodate within the CLEO III upper limit.Comment: 44 pages, 8 figures; typos corrected, one reference added; to appear in Physical Review

    Production of the h_c and h_b and Implications for Quarkonium Spectroscopy

    Full text link
    The recent observation of the h_c is an important test of QCD calculations and provides constraints on models of quarkonium spectroscopy. In this contribution I discuss some of these implications and describe methods to search for the h_c and h_b via radiative transitions and other means.Comment: Talk presented at the 1st Meeting of the APS Topical Group on Hadronic Physics (Fermilab, Oct 24-26, 2004), 4 pages, 1 figure, uses jpconf. References adde

    Elastic Îœe−\nu e^- scattering of solar neutrinos with electromagnetic moments

    Get PDF
    We consider the azimuthal asymmetry of the recoil electrons in elastic Îœe−\nu e^- scattering of solar neutrinos, which can arise if neutrinos have electromagnetic moments and there is a large solar magnetic field. We show that using this effect it is not possible to distinguish between magnetic and electric dipole moment in the 1-Dirac and 2-Majorana neutrino cases and that averaging over neutrino energy is important and suppresses the azimuthal asymmetry in the 2-Majorana case.Comment: 4 pages, Talk given by T. Schwetz at EuroConference on Frontiers in Particle Astrophysics and Cosmology, San Feliu de Guixols, Spain, 30 Sept.-5 Oct. 200
    • 

    corecore