798 research outputs found

    Ischemic gallbladder perforation

    Get PDF
    Background: A 63-year-old woman was admitted to the department of vascular surgery with abdominal angor and hypertension. Abdominal CT angiography revealed occlusion of the celic trunk and superior mesenteric trunk and severe stenosis on the left renal artery. Stenting of the left renal artery was successfully performed. One week after the procedure, the patient was admitted at the emergency department with severe abdominal pain, which began a few hours before admission

    Competing Sudakov veto algorithms

    Get PDF

    When cheating is an honest mistake

    Get PDF
    Dishonesty is an intriguing phenomenon, studied extensively across various disciplines due to its impact on people’s lives as well as society in general. To examine dishonesty in a controlled setting, researchers have developed a number of experimental paradigms. One of the most popular approaches in this regard, is the matrix task, in which participants receive matrices wherein they have to find two numbers that sum to 10 (e.g., 4.81 and 5.19), under time pressure. In a next phase, participants need to report how many matrices they had solved correctly, allowing them the opportunity to cheat by exaggerating their performance in order to get a larger reward. Here, we argue, both on theoretical and empirical grounds, that the matrix task is ill-suited to study dishonest behavior, primarily because it conflates cheating with honest mistakes. We therefore recommend researchers to use different paradigms to examine dishonesty, and treat (previous) findings based on the matrix task with due caution

    Nonlinear optical interactions in silicon waveguides

    Get PDF
    The strong nonlinear response of silicon photonic nanowire waveguides allows for the integration of nonlinear optical functions on a chip. However, the detrimental nonlinear optical absorption in silicon at telecom wavelengths limits the efficiency of many such experiments. In this review, several approaches are proposed and demonstrated to overcome this fundamental issue. By using the proposed methods, we demonstrate amongst others supercontinuum generation, frequency comb generation, a parametric optical amplifier, and a parametric optical oscillator

    Dutch orthopedic thromboprophylaxis: a 5-year follow-up survey

    Get PDF
    Background and purpose Previous surveys in the Netherlands have revealed that guidelines regarding orthopedic thromboprophylaxis were not followed and that a wide variation in protocols exists. This survey was performed to assess the current use of thromboprophylactic modalities and to compare it with the results of a previous survey

    Atomic oxygen assisted CO2conversion: A theoretical analysis

    Get PDF
    peer reviewedWith climate change still a pressing issue, there is a great need for carbon capture, utilisation and storage (CCUS) methods. We propose a novel concept where CO2 conversion is accomplished by O2 splitting followed by the addition of O atoms to CO2. The latter is studied here by means of kinetic modelling. In the first instance, we study various CO2/O ratios, and we observe an optimal CO2 conversion of around 30-40% for 50% O addition. Gas temperature also has a large influence, with a minimum temperature of around 1000 K to a maximum of 2000 K for optimal conversion. In the second instance, we study various CO2/O/O2 ratios, due to O2 being a starting gas. Also here we define optimal regions for CO2 conversion, which reach maximum conversion for a CO2 fraction of 50% and an O/O2 ratio bigger than 1. Those can be expanded by heating on one hand, for low atomic oxygen availability, and by quenching after reaction on the other hand, for cases where the temperatures are too high. Our model predictions can serve as a guideline for experimental research in this domain

    Stronger diversity effects with increased environmental stress : a study of multitrophic interactions between oak, powdery mildew and ladybirds

    Get PDF
    Recent research has suggested that increasing neighbourhood tree species diversity may mitigate the impact of pests or pathogens by supporting the activities of their natural enemies and/or reducing the density of available hosts. In this study, we attempted to assess these mechanisms in a multitrophic study system of young oak (Quercus), oak powdery mildew (PM, caused by Erysiphe spp.) and a mycophagous ladybird (Psyllobora vigintiduo-punctata). We assessed ladybird mycophagy on oak PM in function of different neighbourhood tree species compositions. We also evaluated whether these species interactions were modulated by environmental conditions as suggested by the Stress Gradient Hypothesis. We adopted a complementary approach of a field experiment where we monitored oak saplings subjected to a reduced rainfall gradient in a young planted forest consisting of different tree species mixtures, as well as a lab experiment where we independently evaluated the effect of different watering treatments on PM infections and ladybird mycophagy. In the field experiment, we found effects of neighbourhood tree species richness on ladybird mycophagy becoming more positive as the target trees received less water. This effect was only found as weather conditions grew drier. In the lab experiment, we found a preference of ladybirds to graze on infected leaves from trees that received less water. We discuss potential mechanisms that might explain this preference, such as emissions of volatile leaf chemicals. Our results are in line with the expectations of the Natural Enemies Hypothesis and support the hypothesis that biodiversity effects become stronger with increased environmental stress

    Effect of clay and iron sulphate on volatile and water-extractable organic compounds in bamboo biochars

    Full text link
    Improved plant disease resistance, seed germination and plant productivity have recently been associated with mineral-enhanced biochars. This has generated interest in characterizing those biochar organic compounds which may contribute to their favorable properties. This study builds on recent physico-chemical characterization of a series of mineral-enhanced bamboo biochars produced between 350 and 550 °C. Here, these biochars are subjected to aqueous extraction followed by liquid chromatography organic carbon detection (LC-OCD) and thermal desorption gas chromatography mass spectrometry (TD-GC/MS). These techniques provide a structural insight into their more bio-available organic compounds and how they vary with pyrolysis temperature. In comparison to neat biochar, their mineral-enhanced composites produce at least three times the water-extractable organic carbon, nitrogen and VOCs, and this increase is further amplified at pyrolysis higher temperatures. However, the biochar carbon fraction that is mobile is low, with total TD-GC/MS compatible VOCs reporting approximately 0.2% and LC-OCD solubles approximately 1–2%. Prior mineral impregnation of bamboo enhances the release of oxygenated compounds including humics and phenolics from its biochars. This increase in mobile oxygenates occurs at higher pyrolysis temperatures despite these minerals catalyzing lignocellulose condensation and carbonization. This anomaly is explained by oxygenates relatively small contribution and the self inerting batch pyrolysis conditions producing different biochar surface and bulk molecular properties. By describing the impact of mineral amendments on the yield and structure of mobile organic compounds that may be released from biochar, this work contributes to our understanding of biochar efficacy in soils
    corecore