76 research outputs found

    Superconductivity in silicon nanostructures

    Full text link
    We present the findings of the superconductivity observed in the silicon nanostructures prepared by short time diffusion of boron on the n-type Si(100) surface. These Si-based nanostructures represent the p-type ultra-narrow self-assembled silicon quantum wells, 2nm, confined by the delta - barriers heavily doped with boron, 3nm. The EPR and the thermo-emf studies show that the delta - barriers appear to consist of the trigonal dipole centres, which are caused by the negative-U reconstruction of the shallow boron acceptors. Using the CV and thermo-emf techniques, the transport of two-dimensional holes inside SQW is demonstrated to be accompanied by single-hole tunneling through these negative-U centres that results in the superconductivity of the delta - barriers. The values of the correlation gaps obtained from these measurements are in a good agreement with the data derived from the temperature and magnetic field dependencies of the magnetic susceptibility, which reveal a strong diamagnetism and additionally identify the superconductor gap value.Comment: 4 pages, 6 figures, presented at the 4th International Conference on Vortex Matter in Superconductors, Crete, Greece, September 3-9, 200

    Registration of terahertz irradiation with silicon carbide nanostructures

    Full text link
    The response to external terahertz (THz) irradiation from the silicon carbide nanostructures prepared by the method of substitution of atoms on silicon is investigated. The kinetic dependence of the longitudinal voltage is recorded at room temperature by varying the drain-source current in the device structure performed in a Hall geometry. In the frameworks of proposed model based on the quantum Faraday effect the incident radiation results in the appearance of a generated current in the edge channels with a change in the number of magnetic flux quanta and in the appearance of features in the kinetic dependence of the longitudinal voltage. The generation of intrinsic terahertz irradiation inside the silicon carbide nanostructures is also revealed by the electrically-detected electron paramagnetic resonance (EDEPR) measured the longitudinal voltage as a function of the magnetic field value.Comment: 11 pages, 6 figure

    Terahertz emission from silicon carbide nanostructures

    Full text link
    For the first time, electroluminescence detected in the middle and far infrared ranges from silicon carbide nanostructures on silicon, obtained in the framework of the Hall geometry. Silicon carbide on silicon was grown by the method of substitution of atoms on silicon. The electroluminescence from the edge channels of nanostructures is induced due to the longitudinal drain-source current. The electroluminescence spectra obtained in the terahertz frequency range, 3.4, 0.12 THz, arise due to the quantum Faraday effect. Within the framework of the proposed model, the longitudinal current induces a change in the number of magnetic flux quanta in the edge channels, which leads to the appearance of a generation current in the edge channel and, accordingly, to terahertz radiation.Comment: 10 pages, 9 figure

    Room-temperature quantum oscillations of static magnetic susceptibility of silicon-carbide epitaxial layers grown on a silicon substrate by the method of the coordinated substitution of atoms

    Full text link
    The article presents the results of measurement and analysis of the field dependences of the static magnetic susceptibility of thin epitaxial silicon carbide films grown on the (110) surface of single-crystal silicon by the method of the coordinated substitution of atoms. In weak magnetic fields, the occurrence of two quantum effects at room temperature was experimentally found: the hysteresis of the static magnetic susceptibility and, in the field dependences, quantum Aharonov-Bohm oscillations of the static magnetic susceptibility. The simultaneous occurrence of these effects is a consequence of two- and one-particle interference of charge carriers (two-dimensional holes) on microdefects consisting of dipole centers with negative correlation energy (negative-U dipole centers).Comment: 8 pages, 2 figure

    Квантовая лестница дырочной проводимости в кремниевых наносандвичах

    Get PDF
    The results of studying the quantum conductance staircase of holes in one−dimensional channels obtained by the split−gate method inside silicon nanosandwiches that are the ultra−narrow quantum well confined by the delta barriers heavily doped with boron on the n−type Si (100) surface are reported. Since the silicon quantum wells studied are ultra−narrow (~2 nm) and confined by the delta barriers that consist of the negative−U dipole boron centers, the quantized conductance of one−dimensional channels is observed at relatively high temperatures (T > 77 K). Further, the current−voltage characteristic of the quantum conductance staircase is studied in relation to the kinetic energy of holes and their sheet density in the quantum wells. The results show that the quantum conductance staircase of holes in p−Si quantum wires is caused by independent contributions of the one−dimensional (1D) subbands of the heavy and light holes; these contributions manifest themselves in the study of square−section quantum wires in the doubling of the quantum−step height (G0 = 4e2/h), except for the first step (G0 = 2e2/h) due to the absence of degeneracy of the lower 1D subband. An analysis of the heights of the first and second quantum steps indicates that there is a spontaneous spin polarization of the heavy and light holes, which emphasizes the very important role of exchange interaction in the processes of 1D transport of individual charge carriers. In addition, the field−related inhibition of the quantum conductance staircase is demonstrated in the situation when the energy of the field−induced heating of the carriers become comparable to the energy gap between the 1D subbands. The use of the split−gate method made it possible to detect the effect of a drastic increase in the height of the quantum conductance steps when the kinetic energy of holes is increased; this effect is most profound for quantum wires of finite length, which are not described under conditions of a quantum point contact. In the concluding section of this paper we present the findings for the quantum conductance staircase of holes that is caused by the edge channels in the silicon nanosandwiches prepared within frameworks of the Hall. This longitudinal quantum conductance staircase, Gxx, is revealed by the voltage applied to the Hall contacts, Vxy, to a maximum of 4e2/h. In addition to the standard plateau, 2e2/h, the variations of the Vxy voltage appear to exhibit the fractional forms of the quantum conductance staircase with the plateaus and steps that bring into correlation respectively with the odd and even fractional values.Представлены результаты изучения квантовой лестницы проводимости дырок в одномерных каналах, полученных методом расщепленного затвора внутри кремниевых наносандвичей, которые представляют собой сверхузкую квантовую яму, ограниченную дельта−барьерами, сильно легированными бором на поверхности n−типа Si (100). Так как исследуемая кремниевая квантовая яма является сверхузкой (~2 нм) и ограниченной дельта−барьерами, которые состоят из дипольных центров бора с отрицательной корреляционной энергией, квантовая лестница проводимости одномерных каналов наблюдается при относительно высоких температурах (T > 77 К). Кроме того, квантовая лестница проводимости исследована в зависимости от кинетической энергии дырок и их двумерной плотности в квантовых ямах. Показано, что квантовая лестница дырочной проводимости в р−Si квантовых проволоках обусловлена независимыми вкладами одномерных (1D) подзон тяжелых и легких дырок. Эти вклады проявляются при изучении квантовых проволок квадратного сечения в удвоении амплитуды квантовой ступени (G0 = 4e2/h), исключая первую ступень (G0 = 2e2/h) из−за отсутствия вырождения нижней 1D подзоны. Анализ высоты первой и второй квантовых ступеней указывает на существование спонтанной спиновой поляризации тяжелых и легких дырок, что подчеркивает очень важную роль обменного взаимодействия в процессах одномерного транспорта одиночных носителей. Кроме того, тушение квантовой лестницы дырочной проводимости в электрическом поле проявляется в ситуации, когда энергия полевого разогрева носителей становится сравнимой с энергетической щелью между 1D подзонами. Использование метода расщепленным затвором позволило обнаружить эффект резкого увеличения высоты квантовых ступеней проводимости, когда кинетическая энергия дырок увеличивается. Этот эффект является наиболее сильным для квантовых проволок конечной длины, которые нельзя описать в рамках квантового точечного контакта. Приведены результаты для квантовой лестницы дырочной проводимости, краевыми каналов в кремниевых наносандвичах, выполненных в рамках холловской геометрии. Эта продольная квантовая лестница проводимости, Gxx, выявляется при приложении напряжения к холловским контактам Vху и достигает максимума при 4е2/h. В дополнение к стандартному плато (2e2/h) варьирование напряжения Vxy выявляет дробные значения квантовой лестницы дырочной проводимости с плато и ступенями, величины которых коррелируют с четными и нечетными дробными значениями

    Circularly polarized electroluminescence from silicon nanostructures heavily doped with boron

    Full text link
    The circularly polarized electroluminescence (CPEL) from silicon nanostructures which are the p-type ultra-narrow silicon quantum well (Si-QW) confined by {\delta}-barriers heavily doped with boron, 5 10^21 cm^-3, is under study as a function of temperature and excitation levels. The CPEL dependences on the forward current and temperature show the circularly polarized light emission which appears to be caused by the exciton recombination through the negative-U dipole boron centers at the Si-QW {\delta}-barriers interface
    corecore