59 research outputs found

    Individual differences in the expression of tyrosine hydroxylase mRNA in neurosecretory neurons of the human paraventricular and supraoptic nuclei: positive correlation with vasopressin mRNA

    No full text
    Previous studies indicated that in the human paraventricular nucleus (PVN) and in the supraoptic nucleus (SON) tyrosine hydroxylase (TH) - the first and rate-limiting enzyme in catecholamine synthesis - is localized mainly in magnocellular neurosecretory neurons. Individual differences were observed among control subjects in number and distribution of TH-immunoreactive (IR) perikarya, indicating that antemortem factors may regulate TH expression. Since a large number of TH-IR perikarya were observed in subjects who suffered from somatic illnesses leading to prolonged osmotic or nonosmotic stimulation of vasopressin (VP) release, we suggested that TH expression is related to the activation of VP neurons. The purpose of our study was to apply (1) in situ hybridization for TH mRNA on human PVN and SON to investigate how the previously reported individual differences in TH protein expression are depicted at the transcriptional level and (2) quantitative TH immunohistochemistry and in situ hybridization for VP mRNA throughout the dorsolateral part of the SON (dl-SON) in order to elucidate whether indeed expression of TH in neurosecretory nuclei depends on activation of VP neurons. Postmortem formalin-fixed, paraffin-embedded hypothalamic sections of 16 control subjects were studied for TH protein and TH and VP mRNAs. For 6 of the above cases, the number of TH-IR neurons and the total VP mRNA levels were estimated throughout the entire dl-SON using an image analysis system. Individual variation was observed in TH mRNA expression which appears to parallel the expression of TH-protein. Using Spearman's bivariate test, a positive correlation was found between the number of TH-IR- and TH-mRNA-expressing neurons in both PVN and SON (p < 0.01) as well as between the number of TH-IR neurons and the total VP mRNA in the dl-SON (p < 0.05). Our results show (1) that the individual variability in the number of TH-IR neurons within the neurosecretory nuclei might be due to differential expression and/or stability of TH mRNA and (2) that expression of TH-immunoreactivity in human PVN and SON depends on the activation of VP neuron

    Terrorism, Conflicts and the Responsibility to Protect Cultural Heritage

    No full text
    Intentional destruction of cultural heritage is a well-known phenomenon which has been particularly exacerbated in recent times. Its common denominator is represented by the intent to persecute the communities for which that heritage represents an essential element of their cultural identity and distinctiveness. In legal terms, it produces different implications, to the point that – depending on the circumstances in which it is perpetrated – it may be qualified as a war crime, crime against humanity, violation of internationally recognised human rights, or evidence of the existence of the intent to commit genocide. Since the whole international community is seriously affected by the destruction of cultural heritage, it is indispensable that the doctrine of responsibility to protect (R2P) be put into practice seriously and effectively with the purpose of protecting humanity against the irreplaceable loss of its heritage

    Serotonin Transporter Binding in the Diencephalon Is Reduced in Insulin-Resistant Obese Humans

    No full text
    Background: Altered brain dopaminergic and serotonergic pathways have been shown in obese rodents and humans, but it is unknown whether this is related to obesity per se or to the metabolic derangements associated with obesity. Methods: We performed a case-control study in insulin-sensitive obese (ISO) and insulinresistant obese (IRO) subjects (n = 12) and agematched lean controls (n = 8) and measured serotonin transporter (SERT) binding in the whole diencephalon and specifically in the hypothalamus, as well as dopamine transporter (DAT) binding in the striatum using 123 IFP-CIT single-photon emission computed tomography. We assessed insulin sensitivity using the homeostatic model assessment of insulin resistance. Results: BMI did not differ between the IRO and ISO subjects. SERT binding in the diencephalon was significantly lower in IRO than in ISO subjects, but was not different between lean and obese subjects. SERT binding in the hypothalamus tended to be reduced in obese versus lean subjects, but was not different between IRO and ISO subjects. Striatal DAT binding was similar between lean and obese subjects as well as between ISO and IRO subjects. Conclusions: We conclude that SERT binding in the diencephalon is reduced in insulin-resistant subjects independently of body weight, while hypothalamic SERT binding tends to be lower in obesity, with no difference between insulin-resistant and insulin-sensitive subjects. This suggests that the metabolic perturbations associated with obesity independently affect SERT binding within the diencephalon. (C) 2016 The Author(s) Published by S. Karger AG, Base
    • …
    corecore