2,476 research outputs found

    No-cloning theorem in thermofield dynamics

    Full text link
    We discuss the relation between the no-cloning theorem from quantum information and the doubling procedure used in the formalism of thermofield dynamics (TFD). We also discuss how to apply the no-cloning theorem in the context of thermofield states defined in TFD. Consequences associated to mixed states, von Neumann entropy and thermofield vacuum are also addressed.Comment: 16 pages, 3 figure

    Topological Discrete Algebra, Ground State Degeneracy, and Quark Confinement in QCD

    Full text link
    Based on the permutation group formalism, we present a discrete symmetry algebra in QCD. The discrete algebra is hidden symmetry in QCD, which is manifest only on a space-manifold with non-trivial topology. Quark confinement in the presence of the dynamical quarks is discussed in terms of the discrete symmetry algebra. It is shown that the quark deconfinement phase has the ground state degeneracy depending on the topology of the space, which gives a gauge-invariant distinction between the confinement and deconfinement phases. We also point out that new quantum numbers relating to the fractional quantum Hall effect exist in the deconfinement phase.Comment: 11 pages, 1 figur

    Finite Temperature Density Matrix Renormalization using an enlarged Hilbert space

    Full text link
    We apply a generalization of the time-dependent DMRG to study finite temperature properties of several quantum spin chains, including the frustrated J1J2J_1-J_2 model. We discuss several practical issues with the method, including use of quantum numbers and finite size effects. We compare with transfer-matrix DMRG, finding that both methods produce excellent results.Comment: 4 pages and 4 figure

    Spectra of Quarkonia at Finite Temperature

    Full text link
    Finite-temperature spectra of heavy quarkonia are calculated by combining potential model and thermofield dynamics formalisms. The mass spectra of the heavy quarkonia with various quark contents are calculated. It is found that binding mass of the quarkonium decreases as temperature increases.Comment: 12 pages, 1 figure. To appear Mod.Phys.Lett.

    QED symmetries in real-time thermal field theory

    Get PDF
    We study the discrete and gauge symmetries of Quantum Electrodynamics at finite temperature within the real-time formalism. The gauge invariance of the complete generating functional leads to the finite temperature Ward identities. These Ward identities relate the eight vertex functions to the elements of the self-energy matrix. Combining the relations obtained from the Z2Z_2 and the gauge symmetries of the theory we find that only one out of eight longitudinal vertex functions is independent. As a consequence of the Ward identities it is shown that some elements of the vertex function are singular when the photon momentum goes to zero.Comment: New version as it will appear in Phys RevD 19 pages, RevTex, 1figur

    Confined Phase In The Real Time Formalism And The Fate Of The World Behind The Horizon

    Full text link
    In the real time formulation of finite temperature field theories, one introduces an additional set of fields (type-2 fields) associated to each field in the original theory (type-1 field). In hep-th/0106112, in the context of the AdS-CFT correspondence, Maldacena interpreted type-2 fields as living on a boundary behind the black hole horizon. However, below the Hawking-Page transition temperature, the thermodynamically preferred configuration is the thermal AdS without a black hole, and hence there are no horizon and boundary behind it. This means that when the dual gauge theory is in confined phase, the type-2 fields cannot be associated with the degrees of freedom behind the black hole horizon. I argue that in this case the role of the type-2 fields is to make up bulk type-2 fields of classical closed string field theory on AdS at finite temperature in the real time formalism.Comment: v2: cases divided into sections with more detailed explanations. considerably enlarged with examples and a lot of figures. sec 4.1.2 for general closed cut-out circuits and appendix A for a sample calculation newly added. many minor corrections and clarifying comments. refs added. v3: refs and related discussion added. 1+46 pages, 26 figures. published versio

    Spectral properties of a spin-incoherent Luttinger Liquid

    Full text link
    We present time-dependent density matrix renormalization group (DMRG) results for strongly interacting one dimensional fermionic systems at finite temperature. When interactions are strong the characteristic spin energy can be greatly suppressed relative to the characteristic charge energy, allowing for the possibility of spin-incoherent Luttinger liquid physics when the temperature is high compared to the spin energy, but small compared to the charge energy. Using DMRG we compute the spectral properties of the tJt-J model at arbitrary temperatures with respect to both spin and charge energies. We study the full crossover from the Luttinger liquid regime to the spin-incoherent regime,focusing on small J/tJ/t, where the signatures of spin-incoherent behavior are more manifest. Our method allows us to access the analytically intractable regime where temperature is of the order of the spin energy, TJT\sim J. Our results should be helpful in the interpretation of experiments that may be in the crossover regime, TJT\sim J, and apply to one-dimensional cold atomic gases where finite-temperature effects are appreciable. The technique may also be used to guide the development of analytical approximations for the crossover regime.Comment: 7 pages, 5 figure

    Unconventional Anisotropic s-Wave Superconducting Gaps of LiFeAs Iron-Pnictide Superconductor

    Full text link
    We have performed high-resolution angle-resolved photoemission spectroscopy on Fe-based superconductor LiFeAs (Tc = 18 K). We reveal multiple nodeless superconducting (SC) gaps with 2D/kBTc ratios varying from 2.8 to 6.4, depending on the Fermi surface (FS). We also succeeded in directly observing a gap anisotropy along the FS with magnitude up to ~30 %. The anisotropy is four-fold symmetric with an antiphase between the hole and electron FSs, suggesting complex anisotropic interactions for the SC pairing. The observed momentum dependence of the SC gap offers an excellent opportunity to investigate the underlying pairing mechanism.Comment: 5 pages, 4 figure

    Unconventional superconducting gap in NaFe0.95_{0.95}Co0.05_{0.05}As observed by angle-resolved photoemission spectroscopy

    Full text link
    We have performed high resolution angle-resolved photoemission measurements on superconducting electron-doped NaFe0.95_{0.95}Co0.05_{0.05}As (TcT_{c}\sim18 K). We observed a hole-like Fermi surface around the zone center and two electron-like Fermi surfaces around the M point which can be connected by the Q=(π,π)Q=(\pi, \pi) wavevector, suggesting that scattering over the near-nested Fermi surfaces is important to the superconductivity of this "111" pnicitide. Nearly isotropic superconducting gaps with sharp coherent peaks are observed below TcT_c on all three Fermi surfaces. Upon increasing temperature through TcT_c, the gap size shows little change while the coherence vanishes. Large ratios of 2Δ/kBTc82\Delta/k_{B}T_{c}\sim8 are observed for all the bands, indicating a strong coupling in this system. These results are not expected from a classical phonon-mediated pairing mechanism.Comment: 4 pages, 4 figure
    corecore