75 research outputs found
Common Algebraic Structure for the Calogero-Sutherland Models
We investigate common algebraic structure for the rational and trigonometric
Calogero-Sutherland models by using the exchange-operator formalism. We show
that the set of the Jack polynomials whose arguments are Dunkl-type operators
provides an orthogonal basis for the rational case.Comment: 7 pages, LaTeX, no figures, some text and references added, minor
misprints correcte
The Calogero-Moser equation system and the ensemble average in the Gaussian ensembles
From random matrix theory it is known that for special values of the coupling
constant the Calogero-Moser (CM) equation system is nothing but the radial part
of a generalized harmonic oscillator Schroedinger equation. This allows an
immediate construction of the solutions by means of a Rodriguez relation. The
results are easily generalized to arbitrary values of the coupling constant. By
this the CM equations become nearly trivial.
As an application an expansion for in terms of eigenfunctions of
the CM equation system is obtained, where X and Y are matrices taken from one
of the Gaussian ensembles, and the brackets denote an average over the angular
variables.Comment: accepted by J. Phys.
Rodrigues Formula for the Nonsymmetric Multivariable Laguerre Polynomial
Extending a method developed by Takamura and Takano, we present the Rodrigues
formula for the nonsymmetric multivariable Laguerre polynomials which form the
orthogonal basis for the -type Calogero model with distinguishable
particles. Our construction makes it possible for the first time to
algebraically generate all the nonsymmetric multivariable Laguerre polynomials
with different parities for each variable.Comment: 6 pages, LaTe
Rodrigues Formula for the Nonsymmetric Multivariable Hermite Polynomial
Applying a method developed by Takamura and Takano for the nonsymmetric Jack
polynomial, we present the Rodrigues formula for the nonsymmetric multivariable
Hermite polynomial.Comment: 5 pages, LaTe
Exact solution of Calogero model with competing long-range interactions
An integrable extension of the Calogero model is proposed to study the
competing effect of momentum dependent long-range interaction over the original
{1 \ov r^2} interaction. The eigenvalue problem is exactly solved and the
consequences on the generalized exclusion statistics, which appears to differ
from the exchange statistics, are analyzed. Family of dual models with
different coupling constants is shown to exist with same exclusion statistics.Comment: Revtex, 6 pages, 1 figure, hermitian variant of the model included,
final version to appear in Phys. Rev.
Exact spectrum and partition function of SU(m|n) supersymmetric Polychronakos model
By using the fact that Polychronakos-like models can be obtained through the
`freezing limit' of related spin Calogero models, we calculate the exact
spectrum as well as partition function of SU(m|n) supersymmetric Polychronakos
(SP) model. It turns out that, similar to the non-supersymmetric case, the
spectrum of SU(m|n) SP model is also equally spaced. However, the degeneracy
factors of corresponding energy levels crucially depend on the values of
bosonic degrees of freedom (m) and fermionic degrees of freedom (n). As a
result, the partition functions of SP models are expressed through some novel
q-polynomials. Finally, by interchanging the bosonic and fermionic degrees of
freedom, we obtain a duality relation among the partition functions of SP
models.Comment: Latex, 20 pages, no figures, minor typos correcte
Exclusion statistics,operator algebras and Fock space representations
We study exclusion statistics within the second quantized approach. We
consider operator algebras with positive definite Fock space and restrict them
in a such a way that certain state vectors in Fock space are forbidden ab
initio.We describe three characteristic examples of such exclusion, namely
exclusion on the base space which is characterized by states with specific
constraint on quantum numbers belonging to base space M (e.g.
Calogero-Sutherland type of exclusion statistics), exclusion in the
single-oscillator Fock space, where some states in single oscillator Fock space
are forbidden (e.g. the Gentile realization of exclusion statistics) and a
combination of these two exclusions (e.g. Green's realization of para-Fermi
statistics). For these types of exclusions we discuss extended Haldane
statistics parameters g, recently introduced by two of us in Mod.Phys.Lett.A
11, 3081 (1996), and associated counting rules. Within these three types of
exclusions in Fock space the original Haldane exclusion statistics cannot be
realized.Comment: Latex,31 pages,no figures,to appear in J.Phys.A : Math.Ge
Quantum Calogero-Moser Models: Integrability for all Root Systems
The issues related to the integrability of quantum Calogero-Moser models
based on any root systems are addressed. For the models with degenerate
potentials, i.e. the rational with/without the harmonic confining force, the
hyperbolic and the trigonometric, we demonstrate the following for all the root
systems: (i) Construction of a complete set of quantum conserved quantities in
terms of a total sum of the Lax matrix (L), i.e. (\sum_{\mu,\nu\in{\cal
R}}(L^n)_{\mu\nu}), in which ({\cal R}) is a representation space of the
Coxeter group. (ii) Proof of Liouville integrability. (iii) Triangularity of
the quantum Hamiltonian and the entire discrete spectrum. Generalised Jack
polynomials are defined for all root systems as unique eigenfunctions of the
Hamiltonian. (iv) Equivalence of the Lax operator and the Dunkl operator. (v)
Algebraic construction of all excited states in terms of creation operators.
These are mainly generalisations of the results known for the models based on
the (A) series, i.e. (su(N)) type, root systems.Comment: 45 pages, LaTeX2e, no figure
Integrable Spin Chain with Reflecting End
A new integrable spin chain of the Haldane-Shastry type is introduced. It is
interpreted as the inverse-square interacting spin chain with a {\it reflecting
end}. The lattice points of this model consist of the square roots of the zeros
of the Laguerre polynomial. Using the ``exchange operator formalism'', the
integrals of motion for the model are explicitly constructed.Comment: 13 pages, REVTeX3, with minor correction
A Unified Algebraic Approach to Few and Many-Body Correlated Systems
The present article is an extended version of the paper {\it Phys. Rev.} {\bf
B 59}, R2490 (1999), where, we have established the equivalence of the
Calogero-Sutherland model to decoupled oscillators. Here, we first employ the
same approach for finding the eigenstates of a large class of Hamiltonians,
dealing with correlated systems. A number of few and many-body interacting
models are studied and the relationship between their respective Hilbert
spaces, with that of oscillators, is found. This connection is then used to
obtain the spectrum generating algebras for these systems and make an algebraic
statement about correlated systems. The procedure to generate new solvable
interacting models is outlined. We then point out the inadequacies of the
present technique and make use of a novel method for solving linear
differential equations to diagonalize the Sutherland model and establish a
precise connection between this correlated system's wave functions, with those
of the free particles on a circle. In the process, we obtain a new expression
for the Jack polynomials. In two dimensions, we analyze the Hamiltonian having
Laughlin wave function as the ground-state and point out the natural emergence
of the underlying linear symmetry in this approach.Comment: 18 pages, Revtex format, To appear in Physical Review
- âŠ